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Abstract. A one-parameter family of iteration functions as derived by Hansen and Patrick (1977) was studied. The

Halley’s method was of particular interest, which was modified by using the Taylor polynomial equation of order two

to obtain the well-known Chevbyshev’s iteration formula. Further, using the Laguerre’s disk, two new methods were

constructed out of the Chevbyshev’s functional iteration fomula. The obtained methods may, and often will, depend on

the already calculated values.
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Introduction

The principal objective of this study was to draw attention to

the family of one-parameter iteration formulae derived by

Hansen and Patrick (1977) for finding zeros of polynomial

equation.

P(z) = 0 (1.1)

It was assumed that P was real or complex, and possessed a

certain number of derivatives necessary in the neighbourhood

zeros of p. For convenience, p was specified to be the func-

tion of z with simple zero, ζ.

Then for h (ζ) ≠ 0

where h was the reduced polynomial of p

the equation (1.1) will thus assume the form:

P = (z - ζ) h (1.2)

By taking log of both sides of (1.2) and differentiating the

resulting expression with respect to z, the following was ob-

tained:

Continuing, after some serious but rigorous analysis, Hansen

and Patrick (1977) obtained a family of functional iterative

formulae in the form:

z
i

(k+1) = Φ(z
i

(k)) (k = 0, 1, .....) (1.4)

where Φ is a rational map given as:

 P′

 P

    1

  z - ζ

h′

h
=              + (1.3)

       (α + 1)p
Φ(z

i

(k)) = z
i

(k)  _ (1.5)

            α p′ ± [(p′)2  (α + 1)pp′′]½

It is remarked that α appearing in (1.5) is a variable param-

eter that rules the governing equation (1.4), which is based on

the approximation of second order derivative of  h to the square

of its first derivative.

Interest was motivated by organizing the remaining parts of

the present study in the Results and Discussion section as

follows.

a. Some cubically convergent methods that could be obtained

when the values of α were in the region of (−1.1) was investi-

gated as a class of Hansen-Patrik iterative formulae. This was

done in particular, by neglecting some order of approxima-

tions higher than the term pp′′ appearing in the denominator

parts of these methods, and if it was assumed further that |p|

was sufficiently small in magnitude, then a limiting case of

Halley’s iterative formula of third order was obtained.

One disadvantage of Laguerre’s method, as well as the Euler

and Ostrowski formulae, is that they may occasionally branch

off into complex plane even if the roots of the polynomials

are real.

b. A functional iterative method was derived from the substi-

tution of Halley’s correction formula into Taylor polynomial

of order two for a function p. The obtained method was famil-

iar to the third order convergent Chevbyshev’s formula. More

useful information may be seen from  Jarratt (1968).

In a second approach, the p′′ appearing in the Chevbyshev’s

formula was approximated by the first finite difference
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approximation wherein the bound due to Laguerre was used

(Braess and Hadeler, 1973). In this way, new iterative meth-

ods were obtained. The obtained methods may, and often will,

depend on the already calculated values.

c. Finally, a sample numerical example was illustrated with

these methods and the results so obtained were noted to be

quite accurate as the solutions were approximated within 10-5

in the infinity norm.

Results and Discussion

a. A class of Hansen-Patrick iterative formulae. The val-

ues of α are crucial factors in establishing a family of meth-

ods that are iterative in nature for the determination of meth-

ods (Hansen and Patrick, 1977). For example, for α = 0, a

method due to Ostrowski (1966) was obtained from (1.4) in

the form:

z
i

(k+1) = z
i

(k)   −   
  p

(2.1)
                      ± [(p′)2   

− p′′]½

(k = 0, 1,.......)

By letting α = ∝, a limiting case of the class of methods (1.4)

is the Newton’s second order method:

z
i

(k+1) = z
i

(k) −  

 p
(2.2)

      
  p′

If α = 1, a method due to Euler is obtained in the form:

z
i
(k+1) = z

i
(k) −     

2p

                      p′ + [(p′)2  
− 2pp′′]½

(k = 0, 1,.......) (2.3)

In the case of α = −1, after some minor rearrangements of

(1.4), the Halley’s method (Davies and Dawson, 1975) is

obtained in the form:

z
i

(k+1) = z
i

(k) −        
p

(2.4)
                      

p′ −

   pp′′

  2p′

(k = 0, 1,.......)

Setting α =         , a method due to Laguerre (Ostrowski, 1966),

and Wilkinson (1965), for instance, can be obtained in the

form:

z
i

(k+1) = z
i

(k) −   
           np

(2.5)                      p′ ± [(n−1)2 p′
2  

− n(n−1)pp′′]½

(k = 0, 1,.......)

One advantageous point about method (2.4) is, that it is free

of the square root sign, which is a disadventage for methods

(2.1), (2.3) and (2.5). The presense of square root signs, in

these methods, may lead to complex roots even though the

roots of the polynomial equation are real, especially when pp′′

> (p′)2. Furthermore, the cost of evaluating the square root

signs may be prohibitively expensive.

The foregoing preliminary discussion was the source of moti-

vation for the present research study.

It was further intended to investigate as to what would happen

if α takes on rational values on the interval (−1, 1), i.e., −1< α

< 1 and the expansion of (1.4) by binomial series. A set of

methods was hoped to be obtained out of method (1.4), and

as a limiting case of these methods, it was hoped that Halley’s

formula will be obtained.

z
i

(k+1) = z
i

(k) −          
½p

(2.6)
                      (− ½p′) ± [(p′)2  

− ½pp′′]½

First, a plus sign in the term was taken:

− ½p′ ± [(p′)2  
− ½pp′′]½

The formula (2.6) was then simplified by multiplying through

the denominator and numerator parts of the weight function

by a factor of 2 to have:

z
i
(k+1) = z

i
(k)  −   

        p
(2.7)

                      − p′ + [4(p′)2  
− 2pp′′]½

Then the term:

[4(p′)2
 −2pp′′]

½

was rewritten as:

    
2p′

  
1 

−

   pp′′    ½

    2p′
2

thus, (2.7) becomes:

z
i

(k+1) = z
i

(k) −   
        p

(2.8)
                       

− p′ + 2p′
   

1
 

−
   pp′′   ½

                        

     2(p′)2

(k = 0, 1,.....)

on expanding:

  1 
−

    pp′′    ½ 
  

by the binomial series and writing:                2(p′)2

  pp′′  
as:

 (p′)2

Q

R

  1
 n-1
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then:

 
1 

−

    pp′′      ½ 
  

=  1 −   
R

    +   
 R2

    +  0(.)3
              2(p′)2          

 
4Q       32Q2

In view of the substitution   
pp′′

   =   
R

     it is

  
(p′)2

  
Q  

,

 
1 

−

    pp′′      ½ 
  

=  1 −   
pp′′

  +  
(pp′′)2

    +  0(.)3 (2.9)
              2(p′)2          

4(p′)2     32(p′)4

Hence, the method (2.8) after using the right hand side of

(2.9), becomes:

z
i

(k+1) = z
i

(k) −
         p

(2.10)
                       

p′
 

−

  pp′′  
+

   p2  pp′′
2

  2p′ 16(p′)3

Similarly, by using the same procedure of (2.10), with α =

- 0.1, - 0.2, - 0.3, - 0.4, - 0.6, - 0.7, - 0.8, - 0.9, and 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, the following iterative

methods were obtained.

z
i

(k+1) = z
i

(k) −
            p

        (2.11)
                       

p′
 

−

  pp′′  
+

   9     p′
2  pp′′

2

  2p′ 80       p′
3

(α = - 0.1)

z
i
(k+1) = z

i
(k) −

          p
        (2.12)

                       
p′

 

−

  pp′′  
+

   p′
2  pp′′

2

  2p′    10p′
3

(α = - 0.2)

z
i

(k+1) = z
i

(k) −
            p

        (2.13)
                       

p′
 

−

  pp′′  
+

    7     p′
2  p′′

2

  2p′  80       p′
3

(α = - 0.3)

z
i

(k+1) = z
i

(k) −
            p

        (2.14)
                       

p′
 

−

  pp′′  
+

    3    p′
2  p′′

2

  2p′  40      p′
3

(α = - 0.4)

z
i

(k+1) = z
i

(k) −
            p

        (2.15)
                       

p′
 

−

   pp′′  
+

    p′
2  p′′

2

   2p′      20p′
3

(α = - 0.6)

z
i

(k+1) = z
i

(k) −
            p

        (2.16)
                       

p′
 

−

   pp′′  
+

   3      p′
2  p′′

2

   2p′   80       p′
3

(α = - 0.7)

z
i

(k+1) = z
i

(k) −
        p

        (2.17)
                       

p′
 

−

  pp′′  
+

   p′
2  p′′

2

  2p′    40p′
3

(α = - 0.8)

z
i

(k+1) = z
i

(k) −
        p

        (2.18)
                       

p′
 

−

   pp′′  
+

   p′
2  p′′

2

   2p′    80p′
3

(α = - 0.9)

z
i

(k+1) = z
i

(k) −
            p

        (2.19)
                       

p′
 

−

  pp′′  
+

   11     p′
2  p′′

2

  2p′  80        p′
3

(α = 0.1)

z
i

(k+1) = z
i

(k) −
            p

        (2.20)
                       

p′
 

−

   pp′′  
+

    3       p′
2  p′′

2

   2p′   20         p′
3

(α = 0.2)

z
i

(k+1) = z
i

(k) −
            p

        (2.21)
                       

p′
 

−

   pp′′  
+

   13      p′
2  p′′

2

  2p′   80         p′
3

(α = 0.3)

z
i

(k+1) = z
i

(k) −
            p

        (2.22)
                       

p′
 

−

   pp′′  
+

   7       p′
2  p′′

2

  2p′  40          p′
3

(α = 0.4)

z
i

(k+1) = z
i

(k) −
            p

        (2.23)
                       

p′
 

−

   pp′′  
+

    3       p′
2  p′′

2

  2p′   16         p′
3

(α = 0.5)

z
i

(k+1) = z
i

(k) −
            p

        (2.24)
                       

p′
 

−

   pp′′  
+

   p′
2  p′′

2

   2p′     5p′
3

(α = 0.6)

z
i

(k+1) = z
i

(k) −
            p

        (2.25)
                       

p′
 

−

  pp′′  
+

    17       p′
2  p′′

2

  2p′   80          p′
3

(α = 0.7)

z
i

(k+1) = z
i

(k) −
            p

        (2.26)
                       

p′
 

−

   pp′′  
 +

    9       p′
2  p′′

2

   2p′    40         p′
3

(α = 0.8)
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z
i

(k+1) = z
i

(k) −
            p

        (2.27)
                       

p′
 

−

   pp′′ 
 +

   19       p′
2  p′′

2

   2p′   80          p′
3

(α = 0.9)

z
i

(k+1) = z
i

(k) −
            p

(2.28)
                       

p′
 

− 

  pp′′  
+

    p′
2  p′′

2

  2p′     2p′
3

(α = 1.0)

On further delection of additional terms of order higher than

pp′′, in each of these methods (2.10 to 2.28), the Halley’s

formula was obtained (Hansen and Patrik, 1977).

b. Derivation of Chevbyshev’s third order formula. A

method using the truncated Taylor polynomial, which followed

the Taylor series expansion, was developed for function p given

by the relation:

0 = p(z
i

(k)) + (z
i

(k+1) − z
i

(k))p′ (z
i

(k)) + ½(z
i

(k+1) − z
i

(k))2 p′′(z
i

(k))   (3.1)

The Halley’s correction is:

H(z
i

(k))  = 

          p(z
i

(k))

                
p′(z

i

(k))
  

−
  p(z

i

(k))p′′(z
i

(k))

        2p′(zi

(k))

The following iterative formula is obtained on substituting

the term (z
i

(k+1) − z
i

(k))2 in (3.1) by the Halley’s correction:

z
i

(k+1) = z
i

(k) −  
 p

    1  +   
2pp′

2    p′′

(3.2)
                      p 

   

        (2p′
2
 − pp′′)2

If it is assumed that |p| is sufficiently small, and if the addi-

tional term pp in the denominator part of (3.2) is neglected,

then (3.2) will result in Chevbyshev’s method (Jarratt, 1968):

z
i

(k+1) = z
i

(k) −  
 p

   1  + 
    pp′′

(3.3)
                      p 

   

          2p′
2

(k = 0, 1, .......)

It is notewortly that the substitution of (z
i
(k+1) = z

i
(k))2 by the

Chevbyshev’s correction in the Taylor polynomial (3.1) was

not profitable, as it may be recollected that terms higher than

pp′′ were ignored in method (3.3). Thus, the optimal method

that one can obtain from methods (2.10) − (3.2) is the method

(3.3).

c. A new set of methods derivable from Chevbyshev’s

formula. The presently proposed formulae for finding zeros

of non-linear equation of single variable, referred to in the

introduction, will now be described in detail.

The term p′′(z
i

(k)), appearing in the Chevbyshev’s formula,

was approximated in the form:

p′′(z
i

(k)) = 
  p′ (z

i

(k))  − p′(z
i

(k-1))
(4.1)                         z

i

(k) 
− z

i

(k-1)

Following carefully such ideas (Braess and Hadeler,1973), it

is known that Laguerre’s disk:

|z(k) − z
i

(k-1) | <   n|
  p(z(k)) 

| (4.2)
           | p′(z(k)) |

which contained at least one zero of p. Then using this

connection, for optimal z, the inequality (4.2) was satisfied

with equality, and the disk was thus in contact with the circle

(Braess and Hadeler, 1973):

|z
i

(k) − z
i

(k-1) | =  n|
  p(z(k)) | (4.3)

           | p′(z(k)) |

In view of the equality expressed in (4.3), method (4.1) may

be rewritten in the form:

p′′(z
i

(k))  = 

   p′(z
i

(k)) − p′(z
i

(k-1))
(4.4)

      
   

n
  p(z(k))

             
p′(z(k))

Because of (4.4), the method (3.3) takes the form:

z
i

(k+1) = z
i

(k) − 
  p(z

i

(k))    

    1 +  
 (p′(z

i

(k))  −
 
p′(zi

(k-1)
(4.5)

        p′(z
i

(k))          
       2np′(zi

(k))

(k = 0, 1,....)

Since the method (4.5) made use of nonlinear information of

the degree of polynomial, there was a unique similarity with

Laguerre’s method.

Furthermore, an implicit method from method (3.4) can be

created.

Suppose, it is instead set as:

p′′(z
i

(k)) =  
 (p′(z

i

(k)) − p′(z
i

(k+1)
(4.6)

                      
(z

i

(k))  −  (z
i

(k+1))

then, as before, an implicit iterative formula is obtained:

z
i

(k+1) = z
i

(k) − 
  p(z

i

(k))    

   1 +  
 p′(z

i

(k)) −
 
p′(zi

(k+1))
(4.7)

        p′(z
i

(k))          
   2np′(zi

(k))

(k = 0, 1,....)

Method (4.7) is not self-starting. It thus requires the

results of other methods. For this purpose, we introduced

the use of Newton’s second order method that served this
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purpose as the predictor, while method (4.7) acted as the

correction. Hence, in this case, the case of predictor-

corrector formula was obtained.

Further information on the use of predictor-corrector formu-

lae may be gained from Lambert (1974), and Kung and Traub

(1974).  As it were, when the computed z
i

(k) from the corrector

method was sufficiently close to the result computed from the

predictor formula, then it may be noted from the computation

that the term:

p′ (z
i

(k))  − p′(z
i

(k+1))

       2np′(z
i

(k+1))

was sufficiently close to the origin. In such a circumstance,

the method (4.7) differs only very little from Newton’s

formula:

z
i

(k+1) = z
i

(k)  
− 

  p′(z
i

(k))

                       p′(z
i

(k))

(k = 0, 1,....)

and is hence uniformly bounded, away from the origin, on the

compact interval containing the zero of p.

d. Numerical experiment. Consider the following numerical

test problem.

p(z) = z7 − 28z6 + 322z5 − 1960z4 + 6769z3 −1312z2 + 13068z

− 5040 = 0

By taking the initial starting root to z(0) = 8

Based on this inital starting root, the values obtained using

various methods are shown in Table 1. It may be noted from

Table 1 that each of these methods is condensing to the

numerical value of 7, which is the true zero of p. The conver-

gence of these methods is monotonic, i.e., Φ(z(k+1)) ⊆ Φ (z(k)),

where  z(k+1) ⊆ z(k)  as k →∝.

Because || Φ(z(k+1))|| ⊆ || Φ (z(k))||

then z = ∩ cl Φ (z(k))

where z is the inductive limit of the sequence (z
i

(k+1))

Φ(z(k)) is bounded below on D
0
, z(0) ⊂ D

0

then lim
k→∝  

[Φ(z(k)) − Φ (z(k+1)] = 0 on the basis of inverse func-

tion theorem.

hence [Φ (z(k)) + c (z(k+1)) − z(k))] ≤ Φ (z(k)), c ∈ [0,1]

thus z(k)
 ∈ c(0)[Φ (z(0))]

where it might be defined as c(0) [φ(z(0))] = {z∈ D: φ(z(k)) ≤ φ

(z(0))}

It is remarked that the orders of convergence of methods

(4.5) and (4.7) cannot be less than three in the sense of Alefeld

and Herzberger (1974), as well as Kung and Traub (1974).

Of all the methods tested, Laguerre’s method is the fastest,

but one drawback of Laguerre’s method is that it requires

the computation of square root, which is quite expensive.

Amoung the presently proposed methods, method (4.5)

appears to be stable, as it does not exhibit the problem of

cycling, whereas both Halley’s and Chevbyshev’s formulae

have this tendency to “cycle”. Methods (4.5) and (4.7) also

do not require second order differentiation of a polynomial

equation. As can be observed from the foregoing discussion,

the advantages and disadvantages of each of these methods

as listed in Table 1 may swing either way.

Table 1. Values for various methods derived from Hansen-Patrik formula (Hansen and Patrik, 1977) for refining zeros of

polynomial equation

Number of Halley’s Chevbyshev’s Proposed Proposed Newton’s Laguerre’s

iterations method (2.4)* method** method (4.5)* method (4.7)* method (2.2)* method (2.5)*

0 8 8 8 8 8 8

1 7.614325063 7.464851443 7.58677686 7.59846325 7.614325069 7.05471012

2 7.162354128 7.137917042 7.335685949 7.302129212 7.568219771 7.000036151

3 7.0009143675 7.011492649 7.151255677 7.1103923 7.291817563 6.999999990

4 7.000001835 7.000015521 7.045419265 7.06378217 7.110719918 7.000000009

5 7.000000529 6.999999646 7.005235768 7.00745791 7.022458237 7.000000019

6 6.999999535 7.00013132 7.000114957 7.001156183 7.000000000

7 6.999999712 7.000000906 7.00000328

8 7.000000517 6.99999903

*reference to equation numbers in the text; **Chevbyshev’s method (Jarratt, 1968)
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Conclusion

The present study investigated the family of iteration formu-

lae for refining zeros of a polynomial presented by Hansen

and Patrick (1977), from which the Halley’s method was a

particular case study. It was noted that when |p(z)| was suffi-

ciently small in magnitude, a family of methods obtained from

equation (1.4) for the variable parameter α [α ∈ (−1,1)] was

reduced to the well known Halley’s method (2.4). By using

the Taylor polynomial equation of order two, and substituting

the Halley’s correction formula, the well known Chevbychev’s

formula for finding zeros of a polynomial was rediscovered.

It is further remarked that the Chevbychev’s formula obtained

through this process is the optimal method. Furthermore, two

new formulae were derived from this Chevbychev’s functional

iteration method by using Laguerre’s disk. Thus, the obtained

methods may, and often will, depend on the already calcu-

lated values. These methods were illustrated on a polynomial

and the results obtained were quite accurate in comparison

with other known formulae.
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