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In this paper the existence of extremal solutions of a system of nonlinear abstract measure delay integra-differential
equations is established using the fixed point theorem of Tar ski. Two basic integra-differential inequalities are obtained
which are further applied to prove the boundedness and uniqueness of the solution of related abstract measure delay
integra-differential equations.
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Introduction

The main feature of monotonicity theorems is to establish the
existence of maximal and minimal solutions of related prob-
lem under certain monotonicity conditions on the functions
involved in.it. The monotonicity theorems for abstract meas-
ure differential equations were established by (Birkhoff 1967)
Joshi and Deo (1980) and Joshi and Kasralikar (1982). Also in
(Dhage 1989) the present author obtained similar results for
certain abstract measure integro-differential equations. In
1990, present author (Dhage 1990) considered a system of
abstract measure delay integra-differential equations (in short
delay AMIDE) which was a generalization of ordinary delay
integra-differential equations and studied the basic problems
such as existence, uniqueness, extention and stability using
the fixed point techniques. In the present study we exploit the
same delay AMIDE for other aspects ofthe solutions namely,
maximal and minimal solutions and the boundedness of the
solutions. As mentioned earlier (Dhage 1990) the delay AMIDE
is more general and includes several measure differential
equations as special cases.

The paper is presented in sections describing notations and
preliminaries needed in the sequel, the statement of the prob-
lem and the existence theorem for extremal solutions, the
integro-differential inequalities for the related delay AMIDE
and finally the applications of the delay integro-differential
inequalities are discussed.
Notations andpreliminaries. Let R denote the real line, R" the
Euclidean space with respect to the norm 1.1 defined by

Ixl= lx.l + + Ix), (2.])

for x = (Xl'"'' Xn) ERn.

Let X beaBanach space with a norm denoted by 11.11. For any

two points x, y E X, the sequent xy is defined by

xy = { Z E X I z = x + rty-x), O:S;r < 1}.... (2.2)

Suppose that Xoand Yoare two fixed points of X, and z a
variable point of X such that xoz and Yozare non-empty and
xoz c yoz. For xl' JS E Yoz,we write Xl< x2 (or x2;;::: x.) if YoXI
E yox2. For any point x E Yoz,define the sets Sx and Sx as
follows:

Sx = {rxi - 00 < r < I}, Sx = { rx I - 00 < r:S; 1}..... (2.3)

The distance IIXo- Yo IIbetween Xuand Yois denoted by w,
i.e. IIxo-YoII= W. For each x E xoz there exists a unique vector
x' such that x' < x and IIx-x' II '= w. This vector is denoted
by xw'

A vector measure P defined on a 6-algebra M means an
ordered n-tuples (P1' ... ,P) of n real measures (finite signed
measures). The norm IIP "n on P is defined by

IIP "" = IIPI 1\ +...+ IIPn 11•.•••••••••••••••••••.•••••.•.. .' •••••••.• (2.4)

where \I P IIdenotes the usual norm of the real measure P.. Let
I I

the space of all vector measures defined on M by denoted by
ca (X, M). It can be shown that ca/X, M) is a Banach space with
respect to the norm defined by (2.4) Dunford and Schwartz
(1958). If Il is a positive measure on M, and P E ca (X, M), P
is absolutely continuous w.r.t. u, if Il(E)=O implies P(E)=O
(the zero vector in R"). In this case P« u. For P E ca (X, M),
a positive measure IPln is defined by

n
IP I (E) = LIP. I (E) (2.6)

n i=1 I

where I Pi I denotes the total variation measure of the real
measure Pi' It is known that I peE) Iss I P In (E), E E M.
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Let Mo denote---.!hesmallest a-algebra on SXocontaining {xo}
and the sets Sx' x E Yoxo'For any z > xo' let M, denote the
s~allest a-algebra defined on S, containing M, and the sets

Sx' x E xoz. For a given positive number H, the sets BHand
CHare defined by

BH= { U E R" II u Is< H } : (2.7)
and

CH= { g E ca(Sxo' Mo)" g "n+ C < H, C > 0} (2.8)

Delay amide and extremal solutions. For P« 11, we consider
the delay AMIDE, involving the delay w,

dP- = f(x, P( S ), P( Sx )
du x W

+IF(SX)k(F,y)P(y,P( S>P( Sy)dll (3.1)

satisfying the initial conditions

peE) =geE), E E Mo (3.2)

where g E CMis a known vector measure, dP/dll is the Radon-
Nikodym derivative of P with respect to the positive real
measure 11. f(x, y, z) and g(x, y, z) are the R" -valued functions
def~ed on ~ x BHXBHsuch t~t for e~h P E ca(Sz, M), f(x,
P( S), P( Sxw) and g(x, P( SJ, P( SXw) are u-integrable,
and keF, x) is a real n x n matrix defined on Mz x Sz The detaile
of the delay AMIDE (3.1) - (3.2) and its special forms are
given in the literature (Dhage 1990).

Definition 3.1. Given an initial measure g E CH' a vector
measure p E ca(Sl:' M) (for some z >x~ is said to be a solution
of delay AMIDE (3.1)-(3.2), if

i) peE) = geE), E E Mo' (ii) P « 11 on xoz, (iii) peE) E BH,
E E Mz, (iv) P satisfies (3.1) a.e. [11] on xoz.

A s~ution P of (3.1)-(3.2), existing on xoz will be denoted by
P( SXo'g).

Remark 3.1. The conditions (ii) and (iv) are together equiva-
lent to the condition

peE) = I f( x, P( S), P ( Sxw) du

+ IEcfF(sX)k(F, y) g(y, P( Sy, P( Syw) du) dll········(3.3)

Now an order relation exin R" is introduced as follows.
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Suppose k is a fixed positive integer such that k < n. Then by
x exy, we mean \ ~ Yjifi = 1,2, ... ,k and \;::: Yjifi = k+l, ... ,n.
The definitions of the extremal solutions of AMIDE are given
as follows (3.1)-(3.2).

Definition 3.2. A solution PM=Pi SXo' g ) of the AMIDE
(3.1)-(3.2), existing on xoz (z > xo) is said to be maximal, if
for any other solution P = P(Sxo' g) of (3.1)-(3.2), peE) ex
PiE), E E M, Similarly a minimal solutionP m of the AMIDE
(3.1)-(3.2) may be defined.

Remark 3.2. By the nature of the order relation ex, the
maximal and minimal solutions defined above are respec-
tively k-max, (n-k)-mini and (n-k)-max, k-mini solutions of
(3.1)-(3.2) in the sense of definition considered by Deo and
Murdheshwer (1972).

Lemma 3.1. Let So= ca(X, M) be the set of all vector measures
defined on the a-algebra M. Then (So' ex)is a complete lattice.

Proof Let So = SI X S2 X ... X Sn = ca (X, M). Then PESo
implies P = (PI, ...,Pn)E SI XS2X... XSnand P, E S, where each
S, i = 1,2, ...,n is a Banach space of real measure with a norm
IPjldefined as the total variation measure of Pi"It can be proved
by the arguments similar to those used in Deo and Murd-
heshwer (1972) that each Sj is a complete lattice W.r.t. the order
relation ~ if i = 1,2, ...,k and W.r.t. the order relation ~ if i =
k+ 1,...,n. Since the product of complete lattices is a complete
lattice, (So' ex)is a complete lattice.

We need the following key theorem due to Tarski (1955) in the
sequel:

Theorem A. Let (L, ex)be a complete lattice and let T be an
isotone increasing mappings on L into itself. Then the set F =
{ U ELI Tu =u }is non-empty and (F, ex)is a complete lattice.

Remark 3.3. A mapping T on a lattice L with order relation
is said to be isotone increasing if x, y E L, x exy implies
Tx exTy.

The folllowing assumptions are made:

(A) 11 ({xo}) = 0
(A2) f(x, y, z) and g(x, y, z) are nondecreasing functions

in y and z with respect to the order relation ex,for each x E Sz
(A3) There exist the non-negative u-integrable real func-

tions WI(x) and W2(x) defined on Sz, z » Xosuch that If(x, y,
z) Is~ Wt(x) and Ig(x, y, z) IssW2(x) uniformly for y, z E Bw

(A4) The matrix keF, x) is non-negative i.e. each element
of n x n matrix K(F, x) is a non-negative real number and

sUPFeMIElk(F, x)1dll ~ Ko for a~lx E s, where 1.1denotes
a suitable matrix norm.

Theorem 3.1. Suppose that the assumptions (At)-(A4) are'
satisfied and g E Cli. Then there exist maximal and minimal
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solutions of the AMIDE (3.1)-(3.2) on xoz for some z > Xo'

Proof Let {rn}be a decreasing sequence of real numbers such
that rn ~ 1 as Il-r-s co , and

Srlxo:::> Sr2xO :::>••• :::> Sxo'
Then it follows that:

limn...•M({Srnxo- Sxo})=0 (3.4)

This shows that there exist a number r and a point XI= rxo
such that SXoL SXI and

lWI(x) du + Kol W/x) du-e H - IIq IIn (3.5)

This is possible by hypothesis (A2) and positiveness of jl. A
subset S is defined in the Banach space ca(Sxl, Mx.), by.

S = {P E ca/Sx., Mxl) IpeE) = q(E), E E Mo'

and IIPlln~K} (3.6)

where K = IIq IIn+1WI(x) du + Kol W2(x) du

It follows from (3.5) and (3.6) that IIP IIn< H, for PES. Now
if the operator T on S is defined by

T(P) (E) = q(E) ,E E M, (3.7)

T(P) (E) = IEf(x, P( Sx), P( SXw) du

+ IE(IE(s.)keF, y) g(y, P( Sy), P( Sy w) du) du (3.8)

FE XOXI'E E Mxl.

Then as shown in Theorem 1 of Dhage (1990), the operatorT
maps complete lattice, it is complete w.r.t. the order relation
ex. Let PI' P2 E S and PI ex P2, then by (A2), we get

TP1(E) = IEf(x, P( Sx), P( Sx,) du

+ IE(Ip(s.)k(P, y) q(y, PI ( Sy), PI( SYw)) du) djl

ex IEf(x, P2( Sx ), P2( SXw)) du

+IEcfF(s.)k(F,y)q(y,P2( Sy),P/ SYw)) du) du -

= TP2(E), E E XOX1'E E MXI

This shows that the operator T is an isotone increasing on S.
An application of theorem A yields that the fixed point set of
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the operator T is non-empty and complete lattice. Conse-
quently the solution set of the AMIDE (3.1 )-(3.2) is non-
empty and complete lattice. This further implies that the delay
AMIDE (3.1)-(3.2) has maximal and minimal solutions on
XOXI'XI> xO'The proof is complete.
Integro-differential Inequalities. The basic inequalities
concerning the solution of the integro-differential inequalities
are established as follows. They also serve as the bound for the
solution of the related integra-differential equations and are
useful for proving the uniqueness of the solutions of the delay
AMIDE (3.1)-(3.2).

Theorem 4.1. Let the assumptions of theorem 3.1 be satisfied.
Suppose that a <I>E S, where S is defined as in theorem 3.1,
satisfies

<I>(E)ex q(E), E E M, (4.1)

d<l> - -- ex f'(x, <1>(Sx), <1>(Sx ))
du w

+ JE(SX)keF, y) g(y, <1>(Sy), <1>(Sy w)du (4.2)

FE XOxl'FE Mxl.

Then
<I>(E) ex PM(E),E E MXl (4.3)

where PM= PM( Sxo' q) is the maximal solution of (3.1)-(3.2)
existing on XOX1'XI> Xu
Proof Let P = IiUP S. Clearly the element P exists since S is
a complete lattice. Consider the lattice interval [<1>,P], which
is obviously a complete lattice. Define the operator T on S as
in the proof of theorem 3.1. Then T is isotone increasing and
maps S into itself. To show that T maps [<1>,P] into itself, it is
engough to prove that if PES, and <I>ex P then <I>ex Tp. Let E
E Mx., E E XOXI'then using (4.1), (4.2) and the assumption
.(A2), the following is obtained: .

<I>(E) ex JEf (x, <I>( Sx ), <I>( Sxw) du

+ IE(Ip(sx)k(F,y) g(y, <I>( Sy), <I>( Syw)) du) du

ex IEf (x, p ( Sx ), p ( Sxw) djl

+ IL(IF(s.)k (F, y) g(y, p (Sy ), p ( Sy .»du) djl

=Tp (E)

Thus it is proved that T maps [<1>,P] into itself. An application
of theorem A gives that the maximal solution PMof (3.1)-(3.2)
lies in [<1>,P}. This implies that <I>(E)ex PM(E),E E Mx1. This
completes the proof.
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Theorem 4.2. Let the assumptions of theorem 3.1 be satis-
fied. Suppose that the function <I>E S, where S is defined as in
the proof of theorem 3.1, satisfies

q(E) ex 'II (E), E E M, (4.4)

f (x, 'II( Sx), 'II( s<)) + JF(SX)k (F, y) g(y, p 'II( Sy), 'II
( Syw))dlJ.exd'llldu (4.5)

E E XOXI'E E Mxl.

Then

Pm(E) ex 'II(E), E E Mx. (4.6)

where P mis the minimal solution of the AMIDE (3.1)-(3.2)
existing on XOXI'XI > xO'

The proof of theorem 4.2 is similar to theorem 4.1 and the
details are omitted.

In the following section, the applications of the integro-
differential inequalities are given to prove the boundedness
and uniqueness of the solution of the AMIDE (3.1)-(3.2)
which may be viewed as the comparison theorems for the
AMIDE (3.1)-(3.2).

Applications. Consider the delay AMIDE, involving the
delay w.

dr/du = u(x, r( Sx ), r( SXw)

+ JF(SX)h(F,y) vex, r(Sy), r(Sy)) du (5.1)

E E XO'XI,E E Mxl,

satisfying the initial condition

r(E) = qo(E), E E Mo (5.2)

where u(x, y, z), vex, y, z) are non-negative u-integrable
functions defined on SXI x R+ X R+ (R+ being the set of al
positive real numbers), h(F, y) is a positive real function
defined on MX1 x Sx., r, u arc finite positive measures on MXI
and qo E CH is an initial positive measure defined on Mo'

A monotonicity theorem similar to theorem 3.1 for the equa-
tion (5.1 )-(5.2) can be proved on similar lines. It is merely
stated without proof.

Theorem 5.1. Let all the assumptions of 4.1 hold, with f, g~nd
k being replaced by u, v and h respectively. Let rM= rM( Sx.,
qo) be the maximal solution of (5.1)-(5.2) existing on XUxl.

Suppose <I>E S, where S is defined as in theorem 4.1, satisfies

I<I>In(E)::; qu(E), E E Mo:·······························:···········(5.3)

239

d 1<I>In/dlJ.::; u(x, 1<I>In( 3x), 1<I>In( SXu))

+JF(SX)h(F, y) v(y, 1<I>In( Sy), 1<I>In( Sy .,» du (5.4)

Then

1<jlln(E)::;rM(E), E E Mxl (5.6)

Theorem 5.2. Let all the assumptions of theorem 5.1 hold.
Assume further that the functions f,g and k occuring in (3.1)-
(3.2) satisfy

I f(x, y, z) Is::; u(x, Iyls' Izl)

I g(x, y, z)ls::; vex, Iyls' 1~IJ (5.7)

for all (x, y, z) E SXI X PH X BH' and

I K(F, x) I ::; h(F, x) (5.8)

for (F, x) E MXl X Sx., If P( SXo' q) is any solution of (3.1)-
(3.2) satisfying

Iq(E)I,::; qo (E), E E Mu (5.9)
then

IP(E)ls::; rM(E), EE Mx1 •••••••••••••••••••••••••••••••••••••••••• (5.1O)

where rM is the maximal solution of (5.1)-(5.2).

Proof If P( Sx., q ) is a solution of (3.1)-(3.2), then

peE) = q(E), E E Mo'

and peE) = JEf(x, P( Sx), P( S<)) du

+ JE(JF(SX)keF, y) g(y, P( Sx), P( SXw)) du ) du

This by virtue of (5.7)-(5.8), definition of IPlnand the increas-
ing character of lJ.and v, implies that

IP(E)I,::; u(x, IPln ( Sx ), IPI.( SXw)) du

+ JE(JF(SX)h(P,y) v(y, IPln(Sy), IPln( Sy w))dlJ.) dlJ..... (5.11)

Further the inequalities (5.3)-(5.4) imply that

IPI.(E) s JEu(x, IPI.( Sx ), IPln( S<))dlJ.

+ JE(JE(SX)h(f, ~) v(y, IPln( Sy), IPln( Sy w))dlJ.) du
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Since IP(E)I,:S;IPVE), E E Mx., an application of theorem 4.1
yields that

IP(E)I, s fM(E), E E Mx I

This completes the proof.

Theorem 5.3. Let all the assumptions of theorem 5.1 hold.
Suppose that f and g satisfy

for (x, Yl' ZI)' (x.y., zz) E SXIxBHXBl-I' and the condition (5.7)
holds. Further suppose that the zero measure is the only solu-
tion of (5.1) with qo identically zero measure. Then the
equation (3.1) - (3.2) has at the most one solution.

Proof Let PI:::; PJ Sx., q) and Pz:::; PzL§xo' q) be any two
solutions of the AMIDE (3.1)-(3.1) on XOXI'XI> xO'Then

PJE)-Pz(E):::; J[J f(x, PI( Sx), PI( SXw) - f(x, Pz< Sx),

Pz( Sx,)] du

+JE(Jp(sJ(f, y) [g(x, PI( Sx), PI( SXw) - f(x, P2( Sx),

P2( Sx»] du

This, by virtue of (5.7) and (5.12), the definition of positive
, measure and increasing nature of u, v imply that

IPI(E)-PZ<E)ls :s;JEu(x, IPI-Pzl"( Sx ), IPI-P21( SXw)) du

+ JE(JE(SX)h(F,y) v(y, IPI-Pzl,,( Sy), IPI-Pzl( Sy~» du) dj..t

Now an application of theorem 5.1 yields that

The proof is complete.

Discussion. The equation' (3.1)-(3.1) includes several
measure differential equations discussed earlier by different
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authors as particular cases. If g :::;0 and n:::;1, then the abstract
measure delay differential equation is obtained as considered
by Joshi and Deo (1980).

and :: = f(x, P( Sx),P( Sx) lj , (6.1)

P(E) :::;q(E), E E Mo

Again when g:::;U and f(x, P( Sx ), P( SXw»:::;f(x, P( SXw»
in (3.1) the delay differential equation is obtained as consid-
ered by Joshi and Kasralikar (1982).

P:: =~(:~~':: ::) 1·········································(6.2)

Similarly if w:::;0, F is independent of Sx and keF, x) is a real-
valued function in (3.1), then it gets reduced to the abstract
measure integro-dlfferential equation studied by the present
author (Dhage 1989).

dP - J - 1d:::; f(x, P( Sx »+ F keF, x) g(x, P( Sx »)dj..t
j..t (6.3)

P(E) :::;q(E), E E M()" ,

The AMIDE (6.3) further includes the AMDE discussed by
Sharma (1975).

dP - 1P:~sxo: ::,':~ :w) (6.4)

Thus the AMIDE (3.1)-(3.2) is more general and hence the
results of this paper include the results of Dhage (1989), Joshi
and Deo (1980), Joshi and Kasralikar (1982) and Sharma
(1975) as special cases.
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