Short Communication

Pak J Sci Ind Res 1999 42 (4) 180-181

ON GENERALIZATION OF BANACH'S FIXED POINT THEOREM

Sushil Sharma

Department of Mathematics, Govt Kalidas Girls College, Ujjain (M.P.), India

(Received 16 November 1993; accepted 5 November 1995)

In this paper we have shown that if T be a continuous selfmapping of a metric space (x, d) such that (i) $d(Tx, Ty) < K_1d(x, Tx) + K_2d(y, Ty) + k_3d(x, y)$ for each x, $y \in x k_1, k_2, k_3 > 0$, $k_1+k_2+k_3 < 1$, (ii) there exist a subset $M \subset x$ and a point $x_0 \in M$ such that $d(x, x_0) - d(x_0, Tx) \ge kd(x_0, Tx_0)$ for every $x \in x$ -M, $k = k_1/1-k_2-k_3$ and (iii) T maps M into a compact subset of x. Then T has a unique fixed point in M.

A mapping T of a metric space (x, d) into itself is called a contraction mapping if the condition $d(T(a), T(b)) \le \lambda d(a, b)$ with the constant $\lambda, 0 \le \lambda < 1$, holds for every $a, b \in x$.

The most famous Banach's contraction principle (Banach 1992) states that a contraction mapping on a complete metric space (x, d) has a unique fixed point.

A mapping T of a metric space (x, d) into itself is called globally contractive if the condition $d(T(x), T(y)) < \lambda d(x, y)$ with constant λ , $0 \le \lambda < 1$, holds for every x, $y \in x, x \ne y$.

Rakotch (Rakotch 1962) has generalized the Banach's contraction principle by replacing λ with a function $\lambda(x, y)$ by suitably defining the family { $\lambda(x, y)$ } of functions.

The paper contains the idea of the generalized contraction mapping as introduced by Rakotch (1962) and a theorem on sequence of mappings, and common fixed point theorems have been proved. Throughout this paper, (x, d) will denote a metric space (unless otherwise stated).

Definition 1.1. Let F denote the family of functions $\lambda(x, y)$ satisfying the following conditions: (i) $\lambda(x, y) = \lambda(d(x, y), i.e., \lambda)$ depends on the distance between x and y only, (ii) $0 \le \lambda(d(x, y) < 1)$ for every d(x, y) > 0, (iii) $\lambda(d(x, y))$ is a monotonically decreasing function of d(x, y).

Theorem 2.1. Let T be a continuous mapping of x into itself such that

 $d(Tx, Ty) < \alpha d(x, Tx) + \beta d(y, Ty) + \gamma d(x, y) \text{ for } x, y \in x,$ $x \neq y, \alpha, \beta, \gamma > 0, \alpha + \beta + \gamma < 1.$

If for some $x_0 \in x$ the sequence $\{T^n(x_0)\}$ has a subsequence $\{T^n(x_0)\}$

 $k(x_0)$ converging to a point $u \in x$, then u is a unique fixed point of T.

Proof. Let $x_0 \in x$ be arbitrary and let us define the sequence $\{x_n\}$ of elements as $x_n = T^n(x_0)$, $x_{n+1} = T(x_n)$, n = 0, 1, 2..... It can be easily seen that the sequence $\{x_n\}$ also converges to a point u in x, i.e. $\lim_{n\to\infty} x_n = u$.

Since T is continuous, $T(u) = T(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} T(x_n) = \lim_{n \to \infty} x_{n+1} = u.$

If possible, let u and v be two fixed points in x such that $u \neq v$. So, d (u,v) > 0.

Now we have

 $d(u, v) = d(T(u), T(v) < \alpha d(u, T(u) + \beta d(v, T(v) + \gamma d(u, v))$ $= \gamma d(u, v)$

which is impossible. Hence the fixed point u is unique.

Theorem 2.2. Let T be a continuous mapping of x into itself such that

 $d(T(x), T(y) < \alpha d(x, T(x) + \beta d(y, T(y) + \gamma d(x, y) \text{ for } x, y) \in x, x \neq y, \alpha, \beta, \gamma > 0 \text{ and } \alpha + \beta + \gamma < 1.$ Further suppose that there exist a subset $M \subset x$ and a point $x_0 \in M$ such that

$$d(x, x_0) - d(x_0, Tx) \ge kd(x_0, Tx_0)$$

for every $x \in x-M$, where $k = \alpha/1-\beta-\gamma < 1$ and that T maps M into a compact subset of x.

Then there exists a unique fixed point of T.

Proof. Let $x_0 \neq T(x_0)$ and define $x_n = T^n(x_0)$, $x_{n+1} = T(x_n)$, n=0, 1, 2...... Since T maps M into a compact set, we shall show that $x_n \in M$ for every positive integer n and the rest of the proof will follow as a direct consequence of Theorem 2.1.

It has been noted in Theorem 2.1 that $\{x_n\}$ is a Cauchy sequence in M and it is easy to see that

$$\begin{split} d(x_n, x_{n+1}) &< (\alpha/1 - \beta - \gamma)^n \, d(x_0, \, T(x_0) \\ &< (\alpha/1 - \beta - \gamma) \, d(x_0, \, T(x_0) \end{split}$$

So we have

$$\begin{aligned} d(x_n, x_0) &\leq d(x_0, x_1) + d(x_1, x_{n+1}) + d(x_n, x_{n+1}) \\ &< d(x_0, T(x_0) + d(T(x_0), T(x_n) + (\alpha/1 - \beta - \gamma) d(x_0, T(x_0))) \end{aligned}$$

Short Communication

Therefore

 $d(x_n, x_0) \le \{d(x_0, T(x_0) + d(T(x_0), T(x_n))\} < kd(x_0, T(x_0))$ i.e. $d(x_n, x_0) - d(x_0, T(x_n) < kd(x_0, T(x_0))$, where $k = (\alpha/1 - \beta - \gamma)$

and so from (*) it follows that $x_n \in M$ for every n.

As a direct consequence of Theorem 2.2, we have the following:

Corollary. Let T be a continuous mapping of x into itself satisfying the following condition:

 $d(T(x), T(y) < k_1 d(x, T(x) + k_2 d(y, T(y) + k_3 d(x, y))$

 $k_1, k_2, k_3 > 0$ and $k_1 + k_2 + k_3 < 1$, for every x, $y \in x, x \neq y$. Further suppose that there exists a point $x_0 \in x$ such that

D(x₀, T(x) ≤ $\alpha(x, x_0)$ d(x, x₀) for every x ∈ x, where $\alpha(x, x_0)$ ∈ F and that T maps S(x₀, r) = {x d(x, x₀) < r } with

 $\mathbf{r} = \frac{k \, d(x_0, \, \mathbf{T}(x_0))}{1 - (\alpha + \beta) \, [k d(x_0, \, \mathbf{T}(x_0)]]}, \qquad k = k_1 / 1 - k_2 - k_3$

into compact subset of x.

Then there exists a unique fixed point of T.

Proof. In Theorem 2.2, let us take $M=S(x_0, r)$. Then since $\alpha(x, x_0) = \alpha(d(x, x_0) \in F \text{ and } \beta(x, x_0) = \beta(d(x, x_0) \in F, \alpha(d), \beta(d) \text{ are monotone dccreasing and, since } r \ge kd(x_0, T(x_0))$, we have [from the given condition]

$$d(x, x_0) - d(x_0, T(x) \ge d(x, x_0) - \alpha(x, x_0) d(x, x_0) - \beta(x, x_0) d(x, x_0)$$

= [1- (\alpha(x, x_0) + \beta(x, x_0)] d(x, x_0)

If $d(x, x_0) \ge r$, i.e., $x \notin M$, then we have

So the condition (*) of Theorem 2.2 holds. Hence this corollary follows.

Key words: Banach, Fixed point, Self mapping.

References

- Banach S 1992 Sur les operations dansles ensembles abstraits et leur applications aux. equations integrals; *Fund Math* **3** 160.
- Rakotch E 1962 A note on contractive mappings. *Proc Amer Math Soc* **13** 459-465.