Electronic Spectral Properties of Substituted Azouracil Compounds

Mamdouh S Masoud ${ }^{*}$, Ahmed M Hindawy and Rabah H Ahmed
Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt

(Received 14 October 1997; accepted 31 March 1998)

Abstract

Synthesis of 5-(substituted phenylazo) uracil compounds (I) have been reported. The analytical data and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ are used to elucidate the structures. The electronic spectral properties of the organic compounds were investigated in presence of different solvents and at different pH 's. The pK 's values were determined and related with the molecular structure of the compounds. The electronic transitions were assigned. The phenomenon of tautomerism was explained. The shifts in peak locations in the electronic spectra of the organic compounds have been correlated with different solvent polarity parameters.

$\mathrm{X}=-\mathrm{H} ; 2-\mathrm{CH}_{3} ; 3 \mathrm{CH}_{3} ; 3-\mathrm{OH} ; 2-\mathrm{COOH} ; 4-\mathrm{COOH} ; 2-\mathrm{Cl} ; 3-\mathrm{Cl} ; 4-\mathrm{Cl} ; 2-\mathrm{Br}$; $3-\mathrm{NO}_{2} ; 2,5-\mathrm{diCH}_{3} ; 2,5-\mathrm{diCl}$ and $2,4-\mathrm{diCl}$.

Key words: Electronic spectra, Azo compounds, Uracil compounds.

Introduction

Azo compounds are by far the most important class of dyes comprising over 50% of total world dye stuffs production (Patai 1975). The formation of metal complexes has figured prominently in dye stuff chemistry from very early times. The azo group is connected with a number of important biological reactions such as protein synthesis (Tu et al 1974), inhibition of carcinogenesis (Rosenberg 1971), immuno chemical affinity and nitrogen fixation (Eichhorn 1973). The pyrimidine compounds are important class of compounds for their structural chemistry and biological activities.

In our laboratory (Vogel 1961; Masoud et al 1991; Masoud et al 1992 a,b,c; Khalil et al 1993; Masoud et al 1994 a,b,c), a series of papers have been published about the structural chemistry of the pyrimidine compounds especially those containing azo group.

In the present paper, the electronic spectra of 5-(substituted phenylazo) uracil compounds in different organic solvents and at different pH 's have been analyzed. The major objective of such work lies in the following:
(i) Evaluation of the pK 's values and their interpreting them in relation to the molecular structure of the compounds, (ii) the assignment of the electronic transition, (iii) explaining the phenomena of tautomerism, (iv) illustrating the type of hydrogen bonding, (v) the shift in the peak position is correlated to

[^0]different solvent polarity parameters using the multiple linear regression technique.

Experimental

The 5-(Substituted phenylazo) uracil compounds containing groups with different electronic properties ($-\mathrm{H}, 2-\mathrm{CH}_{3} ; 3-\mathrm{CH}_{3}$; 3-OH; 2-COOH; 4-COOH; 2-Cl; 3-Cl; 4-Cl; 2-Br; 3-No 2 ; 2,5$\mathrm{diCH}_{3} ; 2,5-\mathrm{diCl}$ and $2,4-\mathrm{diCl}$) were prepared by usual method of diazotization of phenolic compounds (Vogel 1961). The compounds (I) were characterized by their elemental analysis given in Table 1.
${ }^{1} \mathrm{H}$-NMR of the organic compounds in presence of d^{6}-DMSO or d ${ }^{1}-\mathrm{HCCl}_{3}$ were recorded on Varain EM-Model 3930-90 MHz Spectrometer. Tetramethylsilane (TMS) was used as an internal standard.

The electronic spectra were recorded using Pye Unicam SP 1800 Spectrophotometer at different pH's (1.03-10.80) and in the presence of different solvents.

Universal buffer solutions were prepared as usual. Dioxane and ethanol solvents were purchased from BDH and Merck companies and were purified following published methods. The other solvents, (cyclohexane, chloroform, carbontetrachloride. DMF, DMSO, acetonitrile, acetone, aq. NH_{3} and ether) were of spectroquality grade.

Method of Calculations. The observed peak location of an absorption band Y in a given solvent has been expressed as a
linear function of different solvent polarity parameters x_{1}, x_{2}, $\mathrm{X}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}$ as follows:

$$
Y=a_{0}+a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\ldots+a_{n} x_{n} \ldots \ldots . \text { (i) }
$$

This equation is amendable to solution for the intercept a_{0} an the coefficients $a_{1}, a_{2}, \ldots ., a_{n}$ by multiple regression. The multiple regression (R) or (MCC) and the probability of variation (P), which are calculated from the modified SPSS programme, have been considered as a measure of the goodness of the fit. The regression intercept a_{0} has been considered as the peak position in the gas phase spectra. Several one, two three and four-parameters equations have been used to correlate the spectral shifts with various empirical solvent polarity parameters which are

$$
\begin{align*}
& \mathrm{E}=2.859 \times 10^{-3} v \ldots \ldots \ldots . . \text { (ii) } \\
& K=(D-1) /(2 D+1) \ldots \ldots \ldots . . \text { (iii) } \\
& M=\left(n^{2}-1\right) /\left(2 n^{2}+1\right) \ldots \ldots . \text { (iv) } \\
& \mathrm{J}=(\mathrm{D}-1 /(\mathrm{D}+2) \text {. } \tag{v}\\
& \mathrm{H}=\left(\mathrm{n}^{2}-1\right) /\left(\mathrm{n}^{2}+2\right) \ldots \ldots \ldots \ldots . \text { (vi) } \\
& \mathrm{N}=\mathrm{J}-\mathrm{H} \text {. } \tag{vii}
\end{align*}
$$

The parameter E given by equation (ii) is related to v which is the wave number of the absorption maximum (Masoud et al 1993). This function is sensitive to both solvent-solute hydrogen bonding and dipolar interactions. The dielectric function K adequately represents the dipolar interactions and is related to the dielectric constant (D) of the solvent (Masoud et al 1993). The functions J and H have been introduced to account for the non-specific solute-solvent interactions such as dispersion and dipolar effects (Masoud et al 1993). These are related to the dielectric constant and refractive index (n) of the solvents, respectively. The functions M and N have been introduced to account for the solute permanent dipole-solvent induced dipole and solute permanent dipole-solvent permanent dipole interactions, respectively (Hillard et al 1981).

Results and Discussion

a) NMR Spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectra of uracil and its 5-substituted arylazo compounds are present in Table 2.

1) The multiple signals in the range 6.9-8.0 ppm are assigned for phenyl protons with total number of 4 protons except the phenylazouracil and 2, 4-dichloro compounds where the number of protons is 5 and 3, respectively. (2) A doublet signal at $5.3-5.5 \mathrm{ppm}$ is due to 2 CH for uracil and 1 CH for its phenylazo derivatives. (3) A sharp doublet signal at 3.9-4.1 ppm is due to $-\mathrm{OCH}_{3}$ group. (4) The doublet broad signal at $6.7-6.9 \mathrm{ppm}$ is assigned for the protons of the - COOH group
attached to the phenyl ring. (5) The hydroxy group gave a broad signal at $8.6-8.9 \mathrm{ppm}$ for the 3 -hydroxy compound, probably in a dimeric structure. (6) The broad band at 10.4 11.1 ppm is due to NH group to assign the presence of the keto group. This band is absent in compounds containing- $\mathrm{H}, 2-$ OCH_{3}, and $2-\mathrm{Cl}$ substituents, probably due to strong solute solvent interaction. (7) The presence of doublet signals at 7.47.6 ppm and $7.8-8.0 \mathrm{ppm}$ in $2-\mathrm{COOH}$ and $4-\mathrm{COOH}$ substituted arylazo compounds, respectively are related to the presence of intramolecular hydrogen bond. (8) The signals 7.7-7.9 and 8.7-8.9 ppm for the parent phenylazo and its $2-\mathrm{Cl}$ substitutent, respectively are due to NH ...O hydrogen bonded structure. (9) In general, the strength of the intramolecular hydrogen bond of the NH...O type is greatly influenced by the nature of the substituent. The electron withdrawing substituents decrease the intramolecular hydrogen bond to a great extent as indicated by the strong shift of the - OH signal. The electron donating substituents show the presence of intramolecular hydrogen bond of the NH...O due to the increasing basicity of the azo nitrogen.

The following possible structures are given:

$X=3-\mathrm{OH}, 2-, 4-\mathrm{COOH}, 2-\mathrm{OCH}_{3}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right) \& 2,4-$ diCl
(b) Electronic Spectroscopy. The effect of pH on the electronic absorption spectra of the organic compounds gave different $\lambda_{\max }$ with some isobestic points. For uracil, two characteristic bands at 208 and 258 nm are due to $\pi-\pi^{*}$ transition.

The second is vanished in solutions with $\mathrm{pH}>9$ with the existence of a new band at 285 nm , due to the existence of an intramolecular hydrogen bond between (N(3)H \& N(1)H) with $2 \mathrm{C}=\mathrm{O}$. The first band assigned to the increase of the aromatic character of uracil ring.

On comparing the electron absorption spectra of the azo compounds to that of uracil, more bands are observed. Two π π^{*} transition bands are observed at (234 up to 250) and (260 up to 286$) \mathrm{nm}$, due to the shift of the tautomeric equilibrium towards the enol form in moderately basic solutions. The band at 350 nm is due to $n-\pi^{*}$ transition of CT nature of the azo group as a donor site, while that at 430-450 nm is due to the existence of azo \rightarrow hydrazo equilibrium.

Different positions are available for protonation - $\mathrm{NH}, \mathrm{C}=\mathrm{O}$ and $\mathrm{N}=\mathrm{N}$ to give ${ }^{+} \mathrm{NH}_{2}, \mathrm{C}=\mathrm{O}^{+} \mathrm{H}$ and $\mathrm{N}=\mathrm{N}^{+} \mathrm{H}$, respectively. The proton is bound symmetrically to both N atoms, i.e., acts as a single basic site or the proton is bound to the azo group in the form of $\pi=$ complex. The azo group can act as a proton acceptor in hydrogen bonds. The aromatic azo compounds are resonance stabilized and tautomerism involving the azo group is well known (Jaffe 1953). The new band recorded for $2-\mathrm{OCH}_{3}$ compound at 530 nm , is probably due to the existence of hydrazo structure. However, for the $3-\mathrm{OH}$ compound, the absence of 250 nm band argued the slight contribution of the enol tautomer beside the protonated species.

For the absorbance-pH relationships, the half-height (Issa 1971) and the modified limiting absorption (Muk and Pravica 1969) methods to evaluate the pK_{a} values gave concordant results (Table 3). All the compounds gave one pK_{a} in the range 6.9-9.7 due to the ionization of - OH group, except the $2-$ $\mathrm{OCH}_{3} ; 3-\mathrm{OH} ; 2-\mathrm{COOH} ; 2-\mathrm{Cl} ; 3-\mathrm{Cl} ; 4-\mathrm{Cl} ; 2-\mathrm{Br} ; 4-\mathrm{COOH} ; 2,5-$ diCH_{3} and $2,4-\mathrm{diCl}$ compounds which gave more than one pK_{a}, due to the ionization of the two - OH groups.
due to the ionization of the phenolic-OH group. However, the pK_{a} of $4-\mathrm{COOH}$ and $2-\mathrm{COOH}$ compounds are 5.4 and 7.0 , respectively due to the ionization of the carboxy group (Masoud et al 1985). The unexpected high pK_{a} (7.0) of ionization of COOH group suggests the formation of strong intramolecular H-bond, i e, the carboxy behaves as an electron donor since it ionized through its resonating structure (Masoud et al 1985). The pK_{2} values are in the order $4-\mathrm{Cl}>2-\mathrm{Cl}>3-\mathrm{Cl}$, and correlated to the position and the electronic character of the substituents. The lower pK_{a} values of 2-and 3-Cl substituents compounds than that of uracil are due to the electron attracting property of chlorophenylazo group. The $\mathrm{pK}_{\mathrm{Br}}>\mathrm{pK}_{\mathrm{C}}$, is due to the high electronegativity of -Cl atom.

The higher pK_{a} of $2,5-\mathrm{diCH}_{3}$ compound than that of $2-\mathrm{CH}_{3}$ compound, is due to the hyperconjugation and the basicity of the two $-\mathrm{CH}_{3}$ groups. The dichloro compounds are with higher pK_{a} values due to the electron attracting property of the two Cl groups. The pK_{a} of $2,5-\mathrm{diCl}$ is higher than that of $2,4-\mathrm{diCl}$. The mechanism of ionization of some compounds is given as follows:

The pK_{a} of uracil is higher than that of phenylazouracil, due to the basicity of the azo group with the presence of different tautomeric structures. Also, the low pK_{a} of $2-\mathrm{CH}_{3}$ is probably explained on the basis that the $-\mathrm{CH}_{3}$ group exists in a structure $-\mathrm{CH}_{2} \mathrm{H}^{+}$. The pK_{a} of $2-\mathrm{OCH}_{3}$ is smaller than that of uracil but higher than that of $2-\mathrm{CH}_{3}$, probably due to the bulkiness of OCH_{3} group with the possible existence of different tautomeric forms. The pK_{a} of $2-\mathrm{OCH}_{3}(5.6)$ is due to the ionization of the $-\mathrm{O}^{-} \mathrm{CH}_{2} \mathrm{H}^{+}$group. The value of pK_{a} of $2-\mathrm{OCH}_{3}$ in nonbuffered media (9.4) is higher than that deduced in buffered media (8.2), probably due to the buffer, that may be form some molecular complexes. The pK_{a} of $3-\mathrm{OH}$ compound (6.1) is

However, the electronic spectral data of the organic compounds are affected by the solvents of variable polarities (Table 5). The data showed that uracil gave $\pi-\pi *$ transition band at 254 nm which is red shifted with the decrease of the dielectric constant of the solvent. So, the solute molecule can act as the hydrogen donor in forming the hydrogen bond. This band is splitted in aq. NH_{3} and ether to $256,282 \& 260,286 \mathrm{~nm}$, respectively. (The band at 282-286 nm appeared in buffered media at $\mathrm{pH}>9$). Another $\pi-\pi^{*}$ transition band at 234 nm in ether has appeared and blue shifted with more polar hydrogen donor solvent, due to the presence of solute-solvent interaction through hydrogen bond formation. The new band at 330
and 334 nm in ether and acetone, respectively, has appeared with low intensity, due to the forbidden $n-\pi^{*}$ electronic transition of an electron from a lone pair orbital of N or O to the π-orbital of the ring system.

For phenylazouracil compound, a well defined band is appeared at 350 nm , due to the $\mathrm{n}-\pi^{*}$ electronic transition of CT nature with the azo group as a donor, i e , solute solvent interaction exists. The extra $n-\pi^{*}$ electronic transition in the wavelength range $286-294 \mathrm{~nm}$ is present in all solvents used, except in presence of acetone. On the other hand, the $\pi-\pi^{*}$ electronic transition at 234 nm is red shifted with the decrease of the dielectric constant of the solvent (similar to uracil), due to conjugation. The bands at 450 and 500 nm in CCl_{4} and
aq. NH_{3}, respectively, are probably assigned the hydrazo structure (Basu Baul et al 1983).

The spectra of 2- CH_{3} compound is strongly similar to that of $3-\mathrm{CH}_{3}$ and $2-\mathrm{OCH}_{3}$ compounds. Three $\pi-\pi^{*}$ electronic transitions are detected at 288-300, 230-246 and 210-220 nm, and are assigned to the transition of the phenyl ring overlapped by a composite broad $\pi-\pi^{*}$ of the azo structure (Masoud and Khalil 1991). The spectra gave a characteristic $n-\pi^{*}$ transition band at 350 nm which is red shifted in presence of CCl_{4}, $\mathrm{CHCl}_{3}, \mathrm{DMF}, \mathrm{DMSO}$ and aq. NH_{3} solvents. This points to solute-solvent interaction (Masoud and Haggag 1982), especially in aq. NH_{3} where the red shift is high. The band at 430470 nm is appeared in all solvents used except DMF, probably

Table 1
m.p. colour and analytical data of the organic compounds

Compound	Colour	m.p. ${ }^{\circ} \mathrm{C}$	Calculated/(found) \%			
			C	H	N	X
Uracil	white	338	$\begin{aligned} & 42.8 \\ & (42.7) \end{aligned}$	$\begin{aligned} & 3.6 \\ & (3.5) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (24.7) \end{aligned}$	$\ldots(\ldots)$
Phenylazo uracil	orange	100	$\begin{aligned} & 55.6 \\ & (55.5) \end{aligned}$	$\begin{aligned} & 3.7 \\ & (3.8) \end{aligned}$	$\begin{aligned} & 25.9 \\ & 26.3) \end{aligned}$	(\ldots)
2-tolyl	brown	195	$\begin{aligned} & 57.4 \\ & (57.7) \end{aligned}$	$\begin{aligned} & 4.4 \\ & (4.6) \end{aligned}$	$\begin{aligned} & 24.4 \\ & (24.7) \end{aligned}$	(\ldots)
3-tolyl	pale brown	215	$\begin{aligned} & 57.4 \\ & (57.8) \end{aligned}$	$\begin{aligned} & 4.4 \\ & (4.6) \end{aligned}$	$\begin{aligned} & 24.4 \\ & (24.7) \end{aligned}$	(\ldots)
2-anisyl	red	140	$\begin{aligned} & 53.7 \\ & (53.5) \end{aligned}$	$\begin{aligned} & 4.1 \\ & (4.2) \end{aligned}$	$\begin{aligned} & 22.8 \\ & (23.1) \end{aligned}$	(\ldots)
3-hydroxy phenyl	black	350	$\begin{aligned} & 51.7 \\ & (52.2) \end{aligned}$	$\begin{aligned} & 3.5 \\ & (3.5) \end{aligned}$	$\begin{aligned} & 24.1 \\ & (24.2) \end{aligned}$	(\ldots)
4-carboxy phenyl	pale orange	300	$\begin{aligned} & 50.8 \\ & (51.1) \end{aligned}$	$\begin{aligned} & 3.1 \\ & (3.1) \end{aligned}$	$\begin{aligned} & 21.5 \\ & (21.7) \end{aligned}$	(\ldots)
2-carboxy phenyl	beige	265	$\begin{aligned} & 50.8 \\ & (51.1) \end{aligned}$	$\begin{aligned} & 3.1 \\ & (3.2) \end{aligned}$	$\begin{aligned} & 21.5 \\ & (21.8) \end{aligned}$	(\ldots)
2-chloro phenyl	orange	130	$\begin{aligned} & 47.9 \\ & (48.0) \end{aligned}$	$\begin{aligned} & 2.8 \\ & (2.9) \end{aligned}$	$\begin{aligned} & 22.4 \\ & (22.6) \end{aligned}$	$\begin{aligned} & 14.2 \\ & (14.5) \end{aligned}$
3-chloro phenyl	deep orange	93	$\begin{aligned} & 47.9 \\ & (47.9) \end{aligned}$	$\begin{aligned} & 2.8 \\ & (2.8) \end{aligned}$	$\begin{aligned} & 22.4 \\ & (22.5) \end{aligned}$	$\begin{aligned} & 14.2 \\ & (14.2) \end{aligned}$
4-chloro phenyl	reddish brown	215	$\begin{aligned} & 47.9 \\ & (47.5) \end{aligned}$	$\begin{aligned} & 2.8 \\ & (2.9) \end{aligned}$	$\begin{aligned} & 22.4 \\ & (22.7) \end{aligned}$	$\begin{aligned} & 14.2 \\ & (14.3) \end{aligned}$
2-bromo phenyl	reddish brown	95	$\begin{aligned} & 40.7 \\ & (40.7) \end{aligned}$	$\begin{aligned} & 2.4 \\ & (2.5) \end{aligned}$	$\begin{aligned} & 19.0 \\ & (19.4) \end{aligned}$	$\begin{aligned} & 27.1 \\ & (27.4) \end{aligned}$
3-nitro phenyl	yellow	186	$\begin{aligned} & 46.0 \\ & (45.9) \end{aligned}$	$\begin{aligned} & 2.7 \\ & (2.9) \end{aligned}$	$\begin{aligned} & 26.8 \\ & (27.2) \end{aligned}$	(\ldots)
2,5-dimethyl	pale grey	275	$\begin{aligned} & 59.0 \\ & 59.5 \end{aligned}$	$\begin{aligned} & 4.9 \\ & (5.0) \end{aligned}$	$\begin{aligned} & 23.0 \\ & (23.2) \end{aligned}$	(\ldots)
2,5-dichloro	brown	130	$\begin{aligned} & 42.1 \\ & (40.5) \end{aligned}$	$\begin{aligned} & 2.1 \\ & (2.3) \end{aligned}$	$\begin{aligned} & 19.7 \\ & (20.2) \end{aligned}$	$\begin{aligned} & 24.9 \\ & (24.5) \end{aligned}$
2,4-dichloro	beige	160	$\begin{aligned} & 42.1 \\ & (40.4) \end{aligned}$	$\begin{aligned} & 2.1 \\ & (2.3) \end{aligned}$	$\begin{aligned} & 19.7 \\ & (20.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 24.9 \\ & (24.5) \\ & \hline \end{aligned}$

due to hydrazo formation. Beside such finding, there is a band at $530-534 \mathrm{~nm}$ in $2-\mathrm{OCH}_{3}$ compound, probably due to the difference in the basicity between $-\mathrm{CH}_{3}$ and $-\mathrm{OCH}_{3}$ groups.

In $3-\mathrm{OH}$ compound, $\mathrm{n}-\pi^{*}$ electronic transition is assigned in the range $358-372 \mathrm{~nm}$ in ethanol, acetone and aq. NH_{3}

Table 2
${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral data (δ, ppm) for uracils

Compound	Signals (δ, pp)	Assignment
Uracil	5.3-5.5 (doublet)	C-H
	7.2-7.4 (doublet)	
	10.4-11.1 (broad)	NH
5-phenylazouracil	6.6-6.8 (broad)	C-H
	6.9-7.5 (multiplet)	$\mathrm{C}_{6} \mathrm{H}_{5}$
	7.7-7.9 (broad)	NH... 0
2-anisylazouracil (DMSO)	3.9-4.1 (doublet)	OCH_{3}
	6.8-7.6 (multiplet)	$\mathrm{C}_{6} \mathrm{H}_{4}$
	7.7-8.0 (triplet)	C-H
	8.8-8.9	
2-anisylazouracil $\left(\mathrm{CDCl}_{3}\right)$	3.9-4.1	OCH_{3}
	6.8-7.5 (multiplet)	$\mathrm{C}_{6} \mathrm{H}_{4}$
	7.7-7.9 (doublet	C-H
	9.1-9.4 (triplet)	
	10.7-11.0 (doublet)	NH
3-hydroxyphenylazouracil	3.7-3.8	
	5.3-5.5 (doublet)	C-H
	7.1-7.4 (multiplet)	$\mathrm{C}_{6} \mathrm{H}_{4}$
	$8.6-8.9$ (broad doublet)	OH phenolic
	10.5-11.1	NH
2-carboxyphenylazouracil	5.3-5.5 (doublet)	C-H
	6.7-6.9	H of COOH
	7.2-7.6	$\mathrm{C}_{6} \mathrm{H}_{4}$
	$10.5-11.1$ (doublet broad)	NH
4-carboxyphenylazouracil	5.3-5.5 (doublet)	C-H
	6.7-6.9 (doublet)	H of COOH
	7.2-8.0 (multiplet)	$\mathrm{C}_{6} \mathrm{H}_{4}$
	10.4-11.3 (broad)	NH
2-chlorophenylazouracil	4.7-4.8	
	5.2-5.3	
	5.5-5.7 (doublet)	C-H
	7.2-8.0 (multiplet	$\mathrm{C}_{6} \mathrm{H}_{4}$
	8.7-8.9	NH.... 0
2,4-dichlorophenylazouracil	5.3-5.5(doublet)	C-H
	7.2-7.8 (multiplet)	$\mathrm{C}_{6} \mathrm{H}_{3}$
	10.5-11.2 (doublet broad)	NH

solvents of a broad nature. It is absent in the other solvents. Since the -OH group is of a strong donor property, this band is assigned to be of intramolecular charge transfer behaviour. The band is red shifted in more polar solvents, due to more stabilization of excited state than ground state (Hasanein et al 1988). The disappearance of the $n-\pi^{*}$ transition for the azo group in $2-\mathrm{COOH}$ compound is probably due to the intramolecular hydrogen bond mainly between the carboxy and the azo groups (Alexander and Sleet 1970; Masoud and Khalil 1991; Masoud et al 1995), beside the steric effect of the 2-carboxy group. The $\pi-\pi^{*}$ transition at 206-230 nm in presence of hydrogen bonding solvents (e.g. ethanol, aq. NH_{3} and ether) is due to the presence of an external hydrogen bond affected through K band (Dearden and Forbes 1960). In $4-\mathrm{COOH}$ compound, the $n-\pi^{*}$ transition of the azo group, is detected with no hydrogen bond between the -COOH and $-\mathrm{N}=\mathrm{N}$-groups. The π π^{*} electronic transition bands of the $2-\mathrm{COOH}$ compound are of great similarity to that of the $4-\mathrm{COOH}$ compound.

In case of $2-\mathrm{Cl}$ compound, the $\mathrm{n}-\pi^{*}$ of the azo group is appeared at longer wavelength than that of 5-(phenylazo) compound,

Table 3 .

pKa values of the organic compounds spectrophotometrically $\left(25^{\circ} \mathrm{C}, 0.5 \mathrm{M}-\mathrm{KCl}\right)$

Compound	Half height	Modifying limiting absorption
uracil	9.0	$8.9 \lambda 258 \mathrm{~nm}$
-H	6.9	$6.9 \lambda 370 \mathrm{~nm}$
$2-\mathrm{CH}_{3}$	6.7	$6.6 \lambda 250 \mathrm{~nm}$
	7.9	$7.9 \lambda 350 \mathrm{~nm}$
$2-\mathrm{OCH}_{3}$	8.2	$8.3 \lambda 470 \mathrm{~nm}$
	$5.6,8.2$	$5.6,8.3 \lambda 242 \mathrm{~nm}$
$2-\mathrm{OCH}_{3}(\mathrm{DMF})$	9.4	$9.4 \lambda 468 \mathrm{~nm}$
$3-\mathrm{OH}$	$2.3,6.1,9.9$	$2.3,6.1,10.0 \lambda 430 \mathrm{~nm}$
	$2.4,4.0$	$2.4,3.9 \lambda 222 \mathrm{~nm}$
$4-\mathrm{COOH}$	5.4	$5.4 \lambda 358 \mathrm{~nm}$
	9.3	$9.3 \lambda 258 \mathrm{~nm}$
$2-\mathrm{COOH}$	9.0	$9.0 \lambda 230 \mathrm{~nm}$
$2-\mathrm{COOH}(\mathrm{DMF})$	$2.2,7.0$	$2.1,7.1 \lambda 370 \mathrm{~nm}$
$2-\mathrm{Cl}$	$4.6,8.6$	$4.6,8.6 \lambda 370 \mathrm{~nm}$
$3-\mathrm{Cl}$	$5.9,7.5$	$5.9,7.6 \lambda 290$
$4-\mathrm{Cl}$	$4.9,9.1$	$5.0,9.2 \lambda 250 \mathrm{~nm}$
$2-\mathrm{Br}$	$5.7,9.3$	$5.7,9.3 \lambda 230 \mathrm{~nm}$
$2,5-\mathrm{diCH}$	$5.4,7.7$	$5.4,7.8 \lambda 250 \mathrm{~nm}$
	9.2	$9.2 \lambda 390 \mathrm{~nm}$
$2,4-\mathrm{diCl}$	$2.3,6.6,8.7$	$2.3,6.7,8.6 \lambda 370 \mathrm{~nm}$
$2,5-\mathrm{diCl}$	9.7	$9.6 \lambda 358 \mathrm{~nm}$

due to the electron attracting property of the choro group. In a similar scope of investigation, no dramatic changes are observed between the electronic absorption spectra of the $2-\mathrm{Cl}$ and both $3-\mathrm{Cl}$ and $4-\mathrm{Cl}$ derivatives. However, the $\lambda_{\text {max. }}$ of the $2-\mathrm{Cl}$ compound is at a lower position compared to both 3 - and 4-Cl compounds. Also, the electronic spectral features of the 2-bromo compound are of great similarity to the $3-\mathrm{Cl}$ compound. For the nitro compound, with the strong attracting property of the nitro group, the 3-nitro compound absorbs at a lower position than the chloro compounds.

In general, the arylazo group is sufficiently polar for proximity effects to become significant in the orthoposition. The tautomeric equilibrium controlled by the intensity of the spectral bands, is high in presence of basic solvents than in a alcohol. The electronic effect of the aryl group is transmitted through the azo group and the phenyl ring.

In $2,4-$ and $2,5-\mathrm{diCl}$ compounds, more chlorine leads to red shift of the electronic spectral bands with increasing the dielectric constant of the solvents (D). The $n-\pi^{*}$ band of the 2,4-diCl compound absorbs at a slightly lower $\lambda_{\text {max. }}$ than that of the $2,5-\mathrm{diCl}$ compound. The hydrazone species at $410-520$ nm is detected in presence of cyclohexane, DMF, DMSO, aq. NH_{3}, acetone and CCl_{4} solvents and located at a higher $\lambda_{\text {max }}$. than the $2-\mathrm{Cl}$ compound, due to the presence of more electron attracting property of the two chloro groups. However, the $2,5-\mathrm{di}-\mathrm{CH}_{3}$ compound absorbs at a longer $\lambda_{\max }$, than either 2 or 3-tolyl, $2,5-\mathrm{diCl}$ and $2,4-\mathrm{diCl}$ compounds, dueo the hyper-
conjugation effect of the two $-\mathrm{CH}_{3}$ groups.
(c) Computer Analysis. The results of calculations for the organic compounds under investigation are collected in Tables $(4,6-9)$. For the uracil and its phenylazo compounds, the solvent spectral gregions are
$\left(Y_{1}=232-268, Y_{2}=270-308, Y_{3}=322-390 \& Y_{4}=430-458 \mathrm{~nm}\right)$.
Based on one parameter equation, the followings are observed:
(1) For Y_{1} and Y_{3}, the best correlation for the compounds, among these single solvent polarity parameters has been obtained with M. So, the solute permanent dipole solvent induced dipole interaction is the most effective on the spectral shifts from the one parameter equation view. (2) Based on Y_{2}, the four parameters are poorly effective. But N \& K are more effective than M \& E . (3) Inspite of E, N \& K are the most effective parameters based on Y_{4} (due to hydrazo \rightarrow azo) spectral analysis, the parameter E is the power. This indicated that, the spectral shifts of visible band Y_{4} are highly sensitive to solute-solvent H -bonding and the (D).

For two-parameters equations, we showed that: (1) The spectral analysis derived from $Y_{1}, Y_{2} \& Y_{3}$ bands showed that the combinations of the parameter M with N, K or E parameters are the most effective. (2) The combinations of E with N and K are less effective than that with M , i e, the solute-solvent

Table 4
Different calculated regression coefficients for Y_{1} of uracil

Parameters $X_{1} X_{2} X_{3} X_{4}$	$\begin{aligned} & Y_{1} \\ & a_{0} \end{aligned}$	a_{1}	a_{2}	a_{3}	a_{4}	MCC	P
E	259.960	-0.325				0.045	0.915
N	255.067	6.735				0.269	0.519
M	226.769	164.517				0.464	0.246
K	249.229	22.307				0.331	0.424
EK	256.309	-0.419	50.623			0.524	0.448
EN	269.250	-0.455	19.003			0.483	0.515
EM	213.945	0.146	196.898			0.499	0.489
N M	211.835	11.235	212.266			0.632	0.280
N K	206.566	-71.129	212.148			0.524	0.448
M K	208.237	196.240	29.867			0.635	0.275
EMK	218.743	-0.213	163.114	42.937		0.662	0.466
ENK	227.510	-0.257	-43.430	155.538		0.558	0.647
ENM	225.896	-0.255	17.494	182.355		0.666	0.458
ENMK	227.949	-0.265	22.602	188.216	-12.845	0.666	0.691

Table 5
Solvent effects on the electronic absorption spectra of the organic compounds ($\lambda_{\max }, \mathrm{nm}$)

Compound	Cyclohexane	Dioxane	CCl_{4}	Other	HCCl_{3}	Acetone	Ethanol	DMF	Acetonitrile	DMSO	Aq. NH_{3}	$\mathrm{H}_{2} \mathrm{O}$
Uracil	--	254	--	234,260	254	344	206	270	216	266	222,256	202
				286,330			258		250		282	256
-H	234,290	238,292	260,330	236,288	240,286	350	234,288	294	238,292	294	290,354	--
	350	354	450	350	350		350	356	350	358	500	
$2-\mathrm{CH}_{3}$	210,244	244,350	352	230,348	244,354	350	204,232	265	246,350	265,354	220,246	--
	350,430	440	440	440	450	440	300,350	354	444	458	286,374	
							450				450	
$3-\mathrm{CH}_{3}$	215,237	351	258,356	206,238	246,353	349	214,238	267,361	240,348	261,359	222,285	--
	352,455	461	448	352,448	455	455	327,358	463	455	461	372,445	--
							445					
$2-\mathrm{OCH}_{3}$	246,283	240,298	254,298	234,286	244,308	340,470	210,302	270,300	222,246	262,300	226,266	--
	450	362,450	450,530	340,460	466,530	530	470,530	470	302,466	470,530	278,468	
									53,4			
$3-\mathrm{OH}$	--	254	--	236,284	246	358	206,246	264	252	265,400	222,282	--
				436		432	364,442	430		446	372,456 ${ }^{\text { }}$	
$2-\mathrm{COOH}$	--	253,306	270,310	230,256	244,304	348,418	206,256	265, 298	252,294	264	224,283	--
		352	346,400	282	430	448	300		428	294	386	
$4-\mathrm{COOH}$	--	254	264,284	250,354	256	365	210,258	266	250	265	268	--
		370	320	430	366		370	374	362	378	280	
$2-\mathrm{Cl}$	214, 230	234,282	298	213,290	244,302	356	206,242	265	246,298	270,362	234,284	--
	290	354,430	420	364,452	368,450		290,360	368	358,442	450	390,532	
							450					
$3-\mathrm{Cl}$	214,240	245	262	210,239	244	357	208	267	244	262	223,285	--
	300,352	354	364	353	356		353	360	350	363	389	
4-Cl	216,250	240,305	260,330	232,290	246,348	330	205,242	256,340	250,336	266,340	234,258	--
	330,360	438	428	340	450	440	342	450	456	440	$\begin{aligned} & 268,288 \\ & 374,448 \end{aligned}$	
	430											

$2-\mathrm{Br}$	214,250	245,352	264,297	209	234	205,218	212	268	227	261	223,285	--
	290,340		355	347	355	348	349	352	348	352	386	
$3-\mathrm{NO}_{2}$	--	235,270	260	232	240,266	338	220,242	270	252	278	236,256	--
		330	326	320	328		270,322	330		334	264,274	
											380	
$2.5-\mathrm{diCH}_{3}$	216,249	250	368	234,284	248	366	208,254	264,366	250,366	264,302	256,264	--
	364,450	366	478	364	366	460	366	470	468	370,470	284,420	
$2.5-\mathrm{diCl}$	216,246	240	230,294	232,282	245,299	205,218	210,240	270,300	246,300	262,302	228,292	--
	290,360	358	362,470	352	364	355,508	296,358	362,440	358	362,440	410	
								490		490		
2.4-diCl	214,247	246	260,300	226,240	250,300	358	208,250	266,306	248,300	264,304	264,284	--
	304,362	360	356	294,360	362		306	362,520	356	362,520	384	
	450											

Table 6
Different calculated regression coefficients for $Y_{1}, Y_{2}, Y_{4} \& Y_{5}$ of 5-(anisylazo)uracil

	Y_{1}							Y_{2}						
$\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}$	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	MCC	P	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	MCC	P
E	224.646	0.580				0.372	0.411	265.496	0.900				0.390	0.265
N	243.899	9.385				0.310	0.499	292.237	23.824				0.473	0.168
M	174.642	385.112				0.696	0.082	343.866	-213.930				0.236	0.512
K	238.692	23.918				0.316	0.491	278.866	61.366				0.479	0.162
EK	216.599	0.969	-20.170			0.383	0.728	287.385	-0.390	80.617			0.485	0.392
EN	203.338	1.092	-10.560			0.390	0.719	305.482	-0.408	31.824			0.479	0.401
EM	140.538	0.735	389.727			0.838	0.089	290.257	0.808	-106.949			0.405	0.533
N M	153.548	16.773	439.353			0.875	0.055	302.199	22.738	-48.356			0.475	0.408
N K	234.875	-7.167	41.700			0.317	0.809	271.025	-14.403	97.814			0.480	0.401
M K	150.518	416.217	37.802			0.849	0.078	293.912	-69.792	57.898			0.484	0.393
EMK	148.164	0.140	412.244	31.292		0.849	0.228	303.851	-0.411	-74.200	77.991		0.491	0.620
ENK	202.199	1.075	-22.533	30.957		0.393	0.901	284.784	-0.377	-4.271	90.800		0.485	0.630
ENM	167.212	-0.610	28.426	469.545		0.833	0.163	313.954	0.393	30.554	-43.484		0.481	0.637
ENMK	211.459	-0.943	149.038	604.681	-282.845	0.968	0.121	290.040	-0.312	. -37.658	-115.330	166.317	0.495	0.799
														(Contd...)

$\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}$	Y_{4}							Y_{5}						
	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	MCC	P	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	MCC	P
E	416.300	1.141				0.849	0.002	528.142	0.059				0.239	0.649
N	451.215	27.654				0.943	0.000	529.605	2.136				0.371	0.469
M	491.557	-148.945				0.282	0.430	538.930	-41.945				0.526	0.284
K	435.335	72.200				0.967	0.0001	528.667	4.841				0.312	0.547
E K	436.808	-0.067	75.529			0.968	0.000	529.391	-0.036	6.816			0.320	0.851
EN	450.516	0.022	27.232			0.943	0.001	532.788	-0.098	4.137			0.416	0.753
EM	415.767	1.143	2.301			0.849	0.114	540.731	-0.023	-46.142			0.532	0.608
NM	438.305	29.060	62.664			0.949	0.0003	537.899	0.480	-37.923			0.530	0.609
N K	407.569	-51.005	201.269			0.985	0.000	541.812	21.621	-53.001			0.574	0.549
M K	427.758	35.145	73.946			0.964	0.0001	538.260	-40.022	0.705			0.528	0.613
EMK	429.146	-0.05	34.530	76.752		0.970	0.001	541.403	-0.099	-44.800	5.664		0.560	0.824
ENK	404.251	0.091	-53.449	202.960		0.985	0.0001	544.810	-0.094	23.434	-52.677		0.602	0.782
ENM	438.307	-0.00005	29.061	62.665		0.949	0.002	542.291	-0.119	2.819	-40.253		0.577	0.808
ENMK	405.840	0.111	-63.544	-34.875	225.796	0.986	0.0004	545.760	-0.106	16.970	-19.405	-36.765	0.618	0.936

Table 7
Calculated regression coefficients for phenylazouracil compound and its 2-tolyl derivative

Parameters$\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}$	$\mathrm{Y}_{1}(-\mathrm{H})$		$\mathrm{Y}_{2}(-\mathrm{H})$		$\mathrm{Y}_{3}(-\mathrm{H})$		$\mathrm{Y}_{1}\left(2-\mathrm{CH}_{3}\right)$		$\mathrm{Y}_{3}\left(2-\mathrm{CH}_{3}\right)$		$\mathrm{Y}_{4}\left(2-\mathrm{CH}_{3}\right)$	
	MCC	P										
E	0.364	0.422	0.181	0.668	0.434	0.210	0.179	0.672	0.191	0.598	0.703	0.035
N	0.387	0.391	0.328	0.427	0.478	0.163	0.352	0.393	0.186	0.607	0.626	0.072
M	0.576	0.176	0.314	0.449	0.088	0.809	0.695	0.056	0.758	0.011	0.230	0.553
K	0.366	0.419	0.286	0.493	0.483	0.157	0.370	0.367	0.251	0.485	0.687	0.041
E K	0.374	0.740	0.321	0.762	0.483	0.394	0.481	0.518	0.260	0.782	0.716	0.116
EN	0.388	0.721	0.412	0.627	0.478	0.404	0.463	0.548	0.194	0.875	0.703	0.129
EM	0.576	0.446	0.403	0.642	0.438	0.474	0.770	0.105	0.893	0.004	0.881	0.011
NM	0.589	0.426	0.514	0.465	0.491	0.381	0.865	0.032	0.929	0.001	0.867	0.015
N K	0.416	0.685	0.472	0.533	0.484	0.392	0.393	0.657	0.652	0.144	0.857	0.019
M K	0.587	0.429	0.462	0.549	0.491	0.380	0.847	0.042	0.938	0.001	0.894	0.008
EMK	0.621	0.644	0.471	0.774	0.491	0.618	0.869	0.103	0.938	0.004	0.916	0.020
ENK	0.416	0.885	0.560	0.643	0.485	0.631	0.482	0.760	0.660	0.297	0.930	0.013
ENM	0.647	0.603	0.565	0.635	0.491	0.619	0.908	0.055	0.929	0.005	0.899	0.030
ENMK	0.667	0.802	0.884	0.223	0.492	0.803	0.962	0.049	0.946	0.012	0.970	0.010

Table 8
Calculated regressions coefficients for 3-chloro; 2,4-dichloro; 2,5-dichloro; 2-chloro; 2-bromo and 3-hydroxyphenylazouracil compounds

Parameters	$\mathrm{Y}_{1}(3-\mathrm{C} 1)$		$\mathrm{Y}_{3}(3-\mathrm{C} 1)$		$\mathrm{Y}_{1}(2,4-\mathrm{diC} 1)$		$\mathrm{Y}_{3}(2,5-\mathrm{diC} 1)$		$\mathrm{Y}_{1}(2,5-\mathrm{diCl})$		$\mathrm{Y}_{2}(2,5-\mathrm{diC} 1)$		$\mathrm{Y}_{3}(2,5-\mathrm{diCl})$	
$\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}$	MCC	P												
E	0.339	0.338	0.071	0.845	0.280	0.466	0.021	0.958	0.437	0.240	0.537	0.136	0.025	0.946
N	0.203	0.574	0.001	0.998	0.349	0.358	0.039	0.920	0.580	0.101	0.416	0.265	0.105	0.772
M	0.700	0.024	0.715	0.020	0.647	0.060	0.452	0.222	0.332	0.382	0.390	0.299	0.807	0.005
K	0.169	0.641	0.050	0.892	0.372	0.325	0.011	0.978	0.590	0.094	0.424	0.255	0.062	0.866
E K	0.445	0.461	0.257	0.788	0.392	0.606	0.093	0.975	0.628	0.222	0.553	0.334	0.184	0.886
EN	0.409	0.527	0.164	0.909	0.361	0.658	0.064	0.988	0.622	0.231	0.565	0.315	0.290	0.735
EM	0.708	0.087	0.738	0.064	0.828	0.031	0.456	0.497	0.664	0.175	0.801	0.046	0.866	0.008
NM	0.705	0.090	0.783	0.036	0.884	0.010	0.467	0.477	0.807	0.042	0.701	0.132	0.843	0.013
N K	0.374	0.590	0.464	0.429	0.418	0.562	0.465	0.482	0.593	0.272	0.427	0.547	0.423	0.501
M K	0.705	0.091	0.785	0.035	0.869	0.015	0.475	0.465	0.788	0.055	0.681	0.155	0.841	0.014
EMK	0.798	0.089	0.812	0.075	0.869	0.055	0.530	0.616	0.799	0.138	0.814	0.117	0.870	0.029
ENK	0.500	0.603	0.481	0.638	0.423	0.784	0.465	0.723	0.628	0.435	0.585	0.515	0.521	0.562
ENM	0.811	0.076	0.812	0.075	0.886	0.040	0.500	0.666	0.832	0.094	0.809	0.124	0.870	0.029
ENMK	0.817	0.170	0.812	0.179	0.914	0.072	0.558	0.770	0.861	0.166	0.825	0.240	0.870	0.084
Parameters	$\mathrm{Y}_{1}(2-\mathrm{Cl})$		$\mathrm{Y}_{2}(2-\mathrm{Cl})$		$\mathrm{Y}_{3}(2-\mathrm{Cl})$		$\mathrm{Y}_{4}(2-\mathrm{Cl})$		$\mathrm{Y}_{1}(2-\mathrm{Br})$		$\mathrm{Y}_{3}(2-\mathrm{Br})$		$\mathrm{Y}_{1}(3-\mathrm{OH})$	
$\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}$	MCC	P												
E	0.762	0.134	0.259	0.501	0.041	0.924	0.739	0.058	0.513	0.157	0.164	0.651	0.329	0.471
N	0.854	0.065	0.367	0.311	0.105	0.804	0.607	0.148	0.380	0.313	0.063	0.862	0.397	0.378
M	0.533	0.355	0.309	0.418	0.371	0.365	0.056	0.905	0.864	0.003	0.455	0.187	0.654	0.111
K	0.906	0.034	0.365	0.334	0.209	0.619	0.664	0.104	0.341	0.369	0.130	0.719	0.400	0.374
E K	0.936	0.123	0.398	0.596	0.399	0.649	0.739	0.206	0.591	0.276	0.167	0.906	0.400	0.706
EN	0.861	0.258	0.410	0.575	0.242	0.860	0.747	0.196	0.555	0.331	0.281	0.796	0.397	0.710
EM	0.774	0.401	0.489	0.440	0.371	0.690	0.861	0.067	0.868	0.015	0.565	0.260	0.781	0.153
N M	0.954	0.089	0.589	0.279	0.417	0.620	0.700	0.260	0.866	0.016	0.529	0.317	0.824	0.103
N K	0.966	0.067	0.367	0.648	0.811	0.069	0.809	0.120	0.521	0.386	0.647	0.150	0.400	0.706
M K	0.960	0.079	0.564	0.316	0.454	0.562	0.734	0.212	0.865	0.016	0.550	0.283	0.792	0.139
EMK	0.972	0.294	0.572	0.541	0.557	0.648	0.862	0.204	0.893	0.035	0.566	0.476	0.799	0.326
ENK	0.980	0.251	0.411	0.799	0.814	0.188	0.950	0.051	0.659	0.377	0.569	0.209	0.400	0.897
ENM	0.964	0.333	0.611	0.467	0.487	0.752	0.862	0.202	0.904	0.027	0.711	0.472	0.824	0.276
ENMK	1.000	0.000	0.680	0.556	0.823	0.369	0.950	0.186	0.930	0.050	0.735	0.338	0.986	0.055

M S Masoud, A M Hindawy, R H Ahmed

Table 9
Calculated regressions coefficients for 2-carboxy; 4-carboxy; 3-nitro; 3-methyl; 2,5-dimethyl and 4-chlorophenylazouracil compounds

Parameters$X_{1} X_{2} X_{3} X_{4}$	$\mathrm{Y}_{1}(2-\mathrm{COOH})$		$\mathrm{Y}_{3}(2-\mathrm{COOH})$		$\mathrm{Y}_{1}(4-\mathrm{COOH})$		$\mathrm{Y}_{3}(4-\mathrm{COOH})$		$\mathrm{Y}_{1}\left(3-\mathrm{NO}_{2}\right)$		$\mathrm{Y}_{2}\left(3-\mathrm{NO}_{2}\right)$		$\mathrm{Y}_{3}\left(3-\mathrm{NO}_{2}\right)$	
	MCC	P												
E	0.116	0.784	0.162	0.702	0.114	0.789	0.638	0.064	0.844	0.156	0.180	0.700	0.135	0.749
N	0.002	0.996	0.470	0.240	0.121	0.776	0.602	0.087	0.644	0.356	0.099	0.832	0.317	0.445
M	0.385	0.346	0.549	0.159	0.750	0.032	0.087	0.824	0.211	0.789	0.532	0.219	0.289	0.488
K	0.020	0.962	0.474	0.235	0.151	0.721	0.622	0.074	0.667	0.333	0.148	0.751	0.314	0.449
EK	0.200	0.903	0.694	0.193	0.155	0.941	0.655	0.186	0.846	0.533	0.182	0.935	0.393	0.657
EN	0.256	0.844	0.727	0.153	0.122	0.964	0.645	0.199	0.866	0.501	0.237	0.891	0.411	0.629
EM	0.385	0.669	0.549	0.408	0.833	0.052	0.647	0.194	0.980	0.199	0.820	0.107	0.352	0.719
NM	0.408	0.634	0.630	0.282	0.842	0.045	0.622	0.231	0.970	0.241	0.655	0.327	0.502	0.484
N K	0.206	0.897	0.474	0.529	0.307	0.781	0.640	0.206	0.674	0.739	0.456	0.627	0.317	0.768
M K	0.395	0.655	0.646	0.259	0.833	0.052	0.634	0.214	0.925	0.380	0.653	0.329	0.484	0.513
EMK	0.418	0.837	0.872	0.098	0.839	0.148	0.669	0.358	1.0	0.000	0.919	0.099	0.533	0.686
ENK	0.377	0.877	0.730	0.338	0.319	0.924	0.696	0.307	1.0	0.000	0.564	0.727	0.417	0.838
ENM	0.472	0.772	0.852	0.127	0.844	0.139	0.661	0.373	1.0	0.000	0.910	0.115	0.575	0.619
ENMK	0.758	0.516	0.876	0.240	0.867	0.263	0.696	0.523	--	--	0.921	0.279	0.652	0.714
Parameters	$\mathrm{Y}_{1}\left(3-\mathrm{CH}_{3}\right)$		$\mathrm{Y}_{3}\left(3-\mathrm{CH}_{3}\right)$		$\mathrm{Y}_{1}\left(2,5-\mathrm{diCH}_{3}\right)$		$\mathrm{Y}_{3}\left(2,5-\mathrm{diCH}_{3}\right)$		$\mathrm{Y}_{1}(4-\mathrm{Cl})$		$\mathrm{Y}_{3}(4-\mathrm{Cl})$		$\mathrm{Y}_{4}(4-\mathrm{Cl})$	
$\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}$	MCC	P												
E	0.076	0.858	0.299	0.401	0.550	0.158	0.313	0.378	0.164	0.673	0.431	0.247	0.801	0.017
N	0.198	0.639	0.212	0.557	0.518	0.188	0.264	0.461	0.280	0.466	0.320	0.402	0.714	0.047
M	0.691	0.058	0.524	0.120	0.566	0.144	0.582	0.077	0.653	0.056	0.074	0.851	0.452	0.261
K	0.241	0.566	0.247	0.491	0.515	0.192	0.296	0.407	0.287	0.453	0.401	0.285	0.727	0.041
EK	0.429	0.602	0.302	0.716	0.554	0.400	0.315	0.693	0.359	0.660	0.432	0.539	0.824	0.058
EN	0.342	0.733	0.325	0.676	0.553	0.401	0.315	0.693	0.356	0.666	0.464	0.483	0.832	0.053
EM	0.756	0.120	0.728	0.071	0.888	0.021	0.799	0.030	0.764	0.072	0.485	0.447	0.819	0.062
NM	0.826	0.057	0.700	0.095	0.867	0.031	0.794	0.029	0.842	0.025	0.386	0.617	0.733	0.145
NK	0.426	0.606	0.407	0.530	0.518	0.458	0.409	0.527	0.293	0.764	0.794	0.050	0.732	0.147
M K	0.823	0.059	0.698	0.096	0.832	0.052	0.791	0.032	0.819	0.036	0.457	0.495	0.756	0.120
EMK	0.855	0.123	0.729	0.181	0.888	0.078	0.805	0.082	0.824	0.104	0.488	0.686	0.841	0.144
ENK	0.494	0.742	0.492	0.618	0.554	0.653	0.454	0.684	0.360	0.859	0.865	0.058	0.832	0.158
ENM	0.868	0.104	0.729	0.181	0.894	0.070	0.808	0.079	0.863	0.060	0.499	0.668	0.866	0.107
ENMK	0.870	0.257	0.729	0.349	0.967	0.024	0.812	0.179	0.951	0.026	0.897	0.100	0.904	0.174

hydrogen bonding has a neglectable role when combined with dielectric constant alone or with refractive index, while has a role when combined with refractive index only (M). The combinations without E is more effective than that with E . (3). The compounds gave visible band $\left(\mathrm{Y}_{4}\right)$ e g 2-\& 4-Cl, 2-CH3 and $2-\mathrm{OCH}_{3}$ compounds were affected strongly by the three parameters $(E, K \& N)$ separated or combined with each other. However, the M parameter alone gives poor correlation but if it is combined with the other parameters, the correlationbecomes good. So, the solute-solvent hydrogen bonding, refractive index and dielectric constant can explain the spectral shifts.

However, the data based on the three parameters equation give more explanation (give moderate to strong fit to the observed spectral shifts).(1) The dielectric constant or the refractive index when combined with solute-solvent hydrogen bonding and the solute permanent dipole-solvent induced dipole interaction, gave the same effects which are higher than the effects resulted from the combination of dielectric constant with solute-solvent hydrogen bonding and solute permanent di-pole-solvent permanent dipole interaction. (2) The compounds which gave Y_{4} (visible band) are the mostly affected by the solvent parameters based on one, two and three parameter equations. The four-parameters equation gives a best fit to the observed spectral shifts. The four combination is the more effective in the most compounds except for the compounds which gave Y_{4}. However, for the $3-\mathrm{NO}_{2}$ compound based on Y_{1}, the distribution of the solvent around the solute from the Frank-Condon principle points that the forces present are distributed in a manner to cancel each other. This explains the inapplicability of four parameters equation for the $3-\mathrm{NO}_{2}$. Also, the electron donor compounds are more effective than the electron withdrawing compounds by the four solvent parameters together based on $\pi-\pi^{*}$ transition (Y_{1}) and the visible bands $\left(\mathrm{Y}_{4}\right)$ and it reversed based on $n-\pi^{*}$ transition band (Y_{2}).

References

Alexander P W, Sleet R J 1970 Solvent effects on the ultraviolet absorption spectra of o-, m- and p-hydroxybenzylideneimines. Aust J Chem. 231183.
Basu Baul T S, Chattopadhyay T K Majee B 1983 Organotin complexes of 5-arylazo-8-quinolinols. Polyhedron 2 (7) 635.

Dearden J C, Forbes WF 1960 The study of hydrogen bonding and related phenomena by ultraviolet light absorption. IV. Intermolecular hydrogen bonding in anilines and phenols. Can J Chem 38896.
Eichhorn G L 1973 Inorganic Biochemistry. Elsevier, New

York, Vol. 2, pp 1191.
Hillard L J, Foulk D S, Gold H S 1981 Effects of solute-solvent interactions on electronic spectra: A Predictive Analysis. Anal Chim Acta. 133319.
Hasanein A A, Masoud M S, Habeeb M H 1988 Spectral studies on some phenol derivatives. Spectroscopy Letters 214.

Issa R M 1971 Spectrophotometric determination of the dissociation constants of 2,4-dinitrosoresorcinol. J Chem URA 14113.
Jaffe H H 1953 A reexamination of the hammette equation. Chem Rev 53 191; 1953 Extensions of hammette equation. Science 118246.
Khalil E A, Masoud M S, El-Merghany A M 1993 Dissociation constants of arylazo orotic acid compounds and stability constants of their complexes. Pak J of Sci \& Industrial Research 3668.
Muk A A, Pravica M B 1969 Effect of substituents on dissociation constants of picramine reagents containing the o, o-dihydroxyazo group. Anal Chim Acta 45534.
Masoud M S, Haggag S S 1982 Equilibrium for the interaction between hematoxylic and iron (III), cobalt (II), nickel (II) and copper (II). Ind J Chem 21 (A) 323.
Masoud M S, El-Dissouky M A, Haggag S S 1985 Electronic spectral studies on compounds containing nitroso group. Spectroscopy Letters 18 (4) 251.
Masoud M S, Abou El-Enein S A, El-Shereafy E 1991a Electrical conductivity properties of o-substituted arylazo barbiturate complexes at different temperatures. J Thermal Analysis 37365.
Masoud M S, Khalil E A 1991b Spectral properties of azo compounds 5-(4-substituted phenylazo) barbituric acids. J Chem Soc Pak 31161.
Masoud M S, Abou El-Enein S A, Hafez O F 1992a Stereochemistry and thermal behaviour of the new cobalt (II), nickel (II) and copper (II) complexes of 5-(2-thiazolylazo) barbituric and thiobarbituric acids at different temperatures. J Thernal Analysis 381365.
Masoud M S, Haggag S S, El-Nahas H M, Abd El-Hi N 1993 Equilibria and structures of some barbiturate compounds. Acta Chim Hung 130783.
Masoud M S, Zaki Z M, Ismail F M, Mohamed A K 1994a Electrical conductivity behaviour of 5-substituted arylazo thiobarbituric acid complexes at different temperatures. Z Phys Chem (N.F) 185223.
Masoud M S, Abou El-Enein S A, El-Khatib A, Abd El-Aziz S 1994b Radiation and temperature effects on the electrical conductivity properties of some disubstituted arylazo barbiturate and thiobarbiturate compounds. Alexandria Engineering J 33(D) 103.

Masoud M S, Hafez O F, Obeid N A 1994c Electrical conductivity properties of some thiazolylazo pyrimidine complexes at different temperatures. PakJ Sci \& Ind Res 37421.

Masoud M S, Hafez O F, Soayed A A 1995 Chemical equilibria for some thiazolylazo compounds and their complexes. Bull-Fac Sci Assiut Univ 24 (B) 45.
Patai S 1975 The chemistry of the hydrazo, azo and azoxy
groups. John Wiley and Sons, part II.
Rosenberg B 1971 Biological effects of Platinum compounds. New agents for the control of tumors. Platinum Metals Rev 1542.
Tu A T, Meller, M J, Sigel H 1974 Metal Ions in Geological Systems. Dekker New York Vol. 1 pp 1.
Vogel A I 1961 A Text Book of Quantitative Inorganic Analysis. Longman, London, 3rd ed.

[^0]: *Author for correspondence

