Pak. j. sci. ind. res., vol.40, nos 5-12, May-December 1997

SYNTHESIS OF HETERO-BICYCLIC COMPOUNDS Part-IX. Formation of 2,2-disubstituted 4,5-dioxo-pyridino [4,3-d] [1,3]dioxins

M.A. BUTT*, R. KEMAL, A. SALAM AND A. AKHTAR

PCSIR Laboratories Complex, Off University Road, Karachi-75280, Pakistan

(Received January 26, 1994; revised April 16, 1997)

Chloropyranodioxins (I) prepared by the reaction of malonyl chloride with mixed ketone were converted into 7-(phenylamino)-pyranodioxins (II) which underwent the phenoxide rearrangement to yield the corresponding pyridinodioxins (III), whose structures were determined by chemical conversions and spectroscopic studies.

Key words: Chloropyranodioxin, Pyridinodioxin, Hetero-bicyclic compounds.

Introduction

Several methods for the synthesis of substituted pyridines have been reported in literature [1-10]. The authors have demonstrated synthetic utility of chloropyranodioxin (I) in their preceding papers of the series [11,12].

In continuation of the previous work [12], preparation of 2, 2-disubstituted-4, 5-dioxo-7-(phenylamino)-pyranodioxins (II) from chloro compounds (I) and their subsequent rearrangement to the corresponding 2,2-disubstituted-4, 5dioxo-pyridinodioxins (III) under the influence of sodium phenoxide in phenol have been investigated. The characterization of these compounds is accomplished by spectroscopic studies supported by elemental analysis and formation of derivatives.

Experimental

Melting points were determined with a Thomas-Hoover Capillary apparatus and are uncorrected. UV and IR spectra were recorded on Beckman 36 and Perkin Elmer 283 spectrophotometer respectively.

7-Chloro-2-ethyl-2-methyl-4, 5-dioxopyrano [4,3-d] [1,3]dioxin (I,R'=CH₃-, $R''=C_2H_5$):- A mixture of malonyl chloride (9.7ml, 0.1 mole) and methyl ethyl ketone (4.5 ml, 0.05 mole) was heated on a water bath until a solid product appeared. Trituration of the product with ether gave 7-chloro-2-ethyl-2-methyl-4,5-dioxopyrano[4,3-d] [1,3] dioxin (8.5g, 70%) (I,R' = CH₃, R'' = C₂H₅) which was crystallized from benzene (m.p. 160°C). Found: C,49.4; H,3.5. C₁₀H₉O₅Cl requires C, 49.1; H, 3.7%.

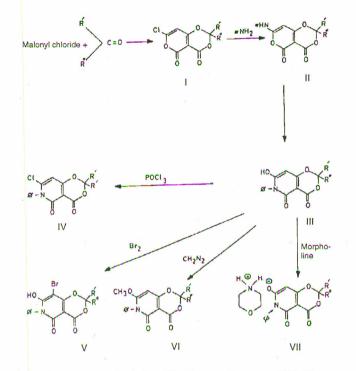
Other chloropyranodioxins prepared similarly are listed in Table 1.

2-Ethyl-2-methyl-4,5-dioxo-7-(phenylamino)-pyrano [4,3-d] [1,3] dioxin ($R'=CH_3$, $R''=C_2H_5$):- To a solution of

*PCSIR Laboratories Complex, Shahrah-e-Jalaluddin Roomi, Lahore-54600, Pakistan. 7-chloro-2-ethyl-2-methyl-4, 5-dioxo-pyrano [4,3-d] [1,3] dioxin (4.9g, 0.02 moles) (I,R'=CH₃,R"=C₂H₅) in CHCl₃ (10 ml) aniline (3.7g; 0.04 mole) in CHCl₃ (10ml) was added with constant stirring. A solid product was obtained which was washed with water and dried. 2-Ethyl-2-methyl-4, 5-dioxo-7- (phenylamino)-pyrano [4,3-d] [1,3] dioxin (4.9g, 82%) (II, R'=CH₃, R"=C₂H₅) was crystallized from a mixture of CHCl₃ and CH₃OH (m.p. 163°C). Found: C, 63.8; H, 4.9; N, 4.5. C₁₆H₁₅NO₅ requires C, 63.8; H, 4.9; N, 4.6%.

Other 2,2-disubstituted -4,5-dioxo-7-(phenylamino)pyrano [4,3-d] [1,3] dioxins (II) were prepared as above and are listed in Table 2.

2-Ethyl-2-methyl-4, 5-dioxo-7-hydroxy-6-phenylpyridino [4,3-d] [1,3] dioxin (III, $R'=CH_{3}$, $R''=C_{2}H_{3}$):-2-Ethyl-2-methyl-4,5-dioxo-7-(phenylamino)-pyrano [4,3-d] [1,3]dioxin (II, R'=CH₃, R"=C₂H₅) (3g, 0.01 moles) was added to a solution of Na (0.92g, 4 moles) in phenol (30 ml) and the mixture was heated at 120°C for 2 minutes. The solution was cooled, diluted with water and extracted with ether to recover excess phenol. The ethereal layer was extracted with water and the combined aqueous extracts (130 ml) were acidified with HCl (3N) to yield a solid product. The product, 2-ethyl-2-methyl-4,5-dioxo-7-hydroxy-6phenyl-pyridino [4,3-d][1,3] dioxin (III,R'=CH₃, R"=C₂H₃; 2.6g, 87%) was crystallized from MeOH, mp 210°C. It gave a reddish colouration with aq. FeCl, and showed effervescence with aq. NaHCO₃. Found: C, 63.8; H, 4.8; N, 4.5. C₁₆H₁₅NO₅ requires C, 63.8; H, 4.9; N, 4.6%.


The rearrangement products III of other arylamino-2, 2-disubstituted-pyranodioxins with sodium phenoxide in phenol are listed in Table 3.

7-Chloro-2-ethyl-2-propyl-4, 5-dioxo-6-phenyl-pyridino [4,3-d] [1,3] dioxin (IV,R'= C_2H_5 , R''= C_3H_7):- 2-Ethyl-7hydroxy-4, 5-dioxo-6-phenyl-2-propyl-pyridino [4,3-d][1,3] dioxin (III, R'= C_2H_5 , R''= C_3H_7 ; 0.5g) and POCl₃ (10ml) were

M.A. BUTT, R. KEMAL, A. SALAM AND A.AKHTAR

No. Keto compound Malonyl			2.2-disubstituted-7-chloro-dioxo	Yield	m.p.	Molecular	Analysis				
		chloride	-pyrano [4,3-d][1,3] dioxins (I)	g.	C°	Formula	Found C H		Require C		
	CH ₃ COC ₂ H ₅ (4.5ml)	9.7 ml	7-chloro-2-ethyl-2-methyl-4, 5-dioxopyranodioxin	1.6	160	$C_{10}H_9O_5Cl$	49.0	3.6	49.0	3.7	
•	C ₆ H ₅ COCH ₃ (2.5g)	4.0 ml	7-chloro-2-mehtyl-2-phenyl-4, 5-dioxopyranodioxin	3.0	147	$C_{14}H_9O_5Cl$	57.5	3.0	57.4	3.1	
•	$C_{6}H_{5}COC_{2}H_{5}$ (5.6g)	8.0 ml	7-chloro-2-ethyl-2-phenyl-4, 5-dioxopyranodioxin	10.0	105	$C_{15}H_{11}O_5Cl$	58.8	3.6	58.7	3.0	
	$p-Cl-C_6H_4COCH_3 (6.4g)$	8.0 ml	7-chloro-2-methyl-2-(p-chloro- phenyl)-4,5-dioxopyranodioxin	7.0	129	$\mathbf{C_{14}H_8O_5Cl_2}$	51.6	2.2	51.4	2.4	
	C ₆ H ₅ CO.COC ₆ H ₅ (8.7g)	8.0 ml	7-chloro-2-pheynl-2-benzoyl-4, 5-dioxopyranodioxin	7.8	88	$C_{20}H_{11}O_{6}Cl$	62.8	2.7	62.7	2.5	
•	CH ₃ CO(CH ₂) ₃ CH ₃ (2.6ml)	4.0 ml	2-butyl-7-chloro-2-methyl-4, 5-dioxopyranodioxin	2.5	91	$C_{12}H_{13}O_5Cl$	52.9	4.5	52.8	4.1	
	$C_{2}H_{5}CO(CH_{2})_{2}CH_{3}(2.6ml)$	4.0 ml	7-chloro-2-methyl-2-propyl-4, 5-dioxopyranodioxin	3.1	110	$C_{12}H_{13}O_{5}Cl$	52.8	4.6	52.8	4.7	
	$CH_{3}(CH_{2})_{2}CO(CH_{2})_{2}CH_{3}$ (3.0)	ml) 4.0 ml	7-chloro-2, 2-dipropyl-4, 5-dioxopyranodioxin	3.0	135	$C_{13}H_{15}O_5Cl$	54.6	5.1	54.4	5.	

TABLE 1. FORMATION OF 2,2-DISUBSTITUTED-7-CHLORO-4,5-DIOXOPYRANO [4,3-d] [1,3] DIOXINS (I).

heated on a water bath for 30 minutes. Excess of POCl₃ was removed under reduced pressure and the residue was crystallized from EtOH/water (0.2g, 38.5%), m.p. 160°C. Found; C, 62.0; H, 5.1; N, 3.8. $C_{12}H_{13}O_5Cl$ requires C, 62.1; H, 5.2; N, 4.0%.

8-Bromo-2-ethyl-7-hydroxy-4,5-dioxo-2,6-diphenylpyridino-[4,3-d] [1,3]dioxin (V,R'= C_6H_5 , R''= C_2H_5):- To a solution of the compound (III, R'= C_6H_5 , R''= C_2H_5 0.5g) in CHCl₃ (20 ml), bromine in CHCl₃ was added drop wise till an orange colour persisted. The reaction mixture was kept at room temperature for 1 h. and the solvent was removed under reduced pressure. A solid bromo product (V, R'=C₆H₅; R"=C₂H₅; 0.35g) was obtained and recrystallized from MeOH. m.p. 124°C. Found: C, 57.7; H, 3.5. C₂₁H₁₆NO₅ Br requires C, 57.0; H, 3.6; N, 3.2%.

2-Butyl-7-methoxy-2-methyl-4, 5-dioxo-6-phenylpyridino [4,3-d] [1,3] dioxin (VI, $R'=CH_3$, $R''=C_4H_9$):- To 2-butyl-7-hydroxy-2-methyl-4, 5-dioxo-6-phenyl-pyridino [4,3-d] [1,3] dioxin (III, $R'=CH_3$, $R''=C_4H_9$; 0.5g) in ether, was added a solution of diazomethane in ether until yellow color persisted. The solution was kept for 2 h. in a refrigerator and the solvent was removed. The residue yielded a product on trituration with ether. The product 2-butyl-7-methoxy-2-methyl-4, 5-dioxo-6-phenyl-pyridino [4,3-d] [1,3] dioxin (VI R'=CH₃, R''=C₄H₉; 0.23g) was crystallized from MeOH, mp 149°C. Found: C,66.5; H,5.9; N,4.0. C₁₉H₂₁NO₅ requires C,66.5; H,6.1; N,4.1%.

Morpholinium salt (VII, $R'=C_2H_5$ and $R''=C_3H_7$) of 7-hydroxy product (III, $R'=C_2H_5$, $R''=C_3H_7$):- To the compound (0.5g) (III, $R'=C_2H_5$, $R''=C_3H_7$) in CHCl₃ (10ml) was added morpholine (0.5 ml) and the mixture was refluxed for 3 minutes. The solvent was removed under reduced pressure and the residue obtained (0.5g, 79%) was recrystallized from MeOH, m.p. 193°C. Found C, 63.5; N, 6.7. $C_{22}H_{28}N_2O_6$ requires C, 63.4; N, 6.7%.

Results and Discussion

We have studied the formation of some hitherto unreported chloropyranodioxins (I) by the reaction of malonyl chloride with mixed ketones. These chloropyranodioxins (I) reacted with aniline to yield 2,2-disubstituted-7-(phe-

76

No.	2,2-disubstitute-7-chloro- 4,5-dioxo-pyranodioxin(I)		Quantity	Aniline (g)	e 2,2-disubstituted-4,5-dioxo 7-(phenylamino) pyrano-	Yield %	m.p. C°	Molecular			Analys		UV Light Absorption			
			(g)					Formula	F	ound		Required			95% MeOH	
	R'	R"	۰.		[4,3-d][1,3] dioxin(II)				С	Н	Ν	С	Н	Ν	$\lambda_{_{max}}(nm)$	Loge
1.	CH ₃ -	C ₂ H ₅ -	4.9	3.7	2-ethyl-2-methyl-4,5-dioxo 7-(phenylamino) pyranodioxin	82	163	$C_{16}H_{15}NO_{5}$	63.8	4.9	4.6	63.8	4.8	4.6	341	4.72
2.	CH ₃ -	C ₆ H ₅ -	7.0	4.4	2-methyl-2-phenyl-4,5-dioxo -7-(phenylamino) pyranodioxin	84	147	$C_{20}H_{15}NO_{5}$	68.8	4.0	3.9	68.7	4.3	4.0	344	4.48
3.	C_2H_5 -	C ₆ H ₅ -	8.0	4.7	2-ethyl-2-phenyl-4,5-dioxo- 7-(phenylamino)-pyranodioxin	78	156	C ₂₁ H ₁₇ NO ₅	69.9	4.4	3.8	69.9	4.6	3.8	344	4.52
4.	CH ₃ -	p-Cl-C ₆ H ₄ -	6.0	3.4	2-(p-chlorophenyl)-2-methyl -4,5-dioxo-7-(phenylamino) -pyranodioxin	91	160	$C_{20}H_{14}NO_{5}Cl$	62.4	3.3	3.4	62.5	3.6	3.6	345	4.83
5.	C ₆ H ₅ -	C ₆ H ₅ CO-	6.0	2.9	2-benzoyl-4,5-dioxo-phenyl- 7-(phenylamino)-pyranodioxin	41	180	$C_{26}H_{17}NO_{6}$	71.0	3.7	3.2	71.1	3.9	3.2	351	4.29
6.	CH ₃ -	n-C ₄ H ₉ -	6.5	3.7	2-butyl-2-methyl-4,5-dioxo- 7-(phenylamino)-pyranodioxin	73	161	C ₁₈ H ₁₉ NO ₅	65.8	5.6	4.2	65.6	5.7	4.2	343	4.55
7.	C ₂ H ₅ -	n-C ₃ H ₇ -	6.5	3.7	2-ethyl-4,5-dioxo-7-(phenyl- amino)-2-propyl-pyranodioxin	77	154	C ₁₈ H ₁₈ NO ₅	65.2	5.5	4.0	65.6	5.7	4.2	343	4.18
8.	n-C ₃ H ₇ -	n-C ₃ H ₇ -	7.0	3.7	4,5-dioxo-7-(phenylamino)- 2,2-dipropyl-pyranodioxin	62	172	C ₁₉ H ₂₁ NO ₅	66.0	6.1	4.0	66.4	6.1	4.1	342	4.66

TABLE 2. FORMATION OF 2,2-DISUBSTITUTED 4,5-DIOXO-7-(PHENYLAMINO)-PYRANO [4,3-d][1,3] DIOXINS.

TABLE 3. FORMATION OF 2,2-DISUBSTITUTED-7-HYDROXY-4,5-DIOXO-6-PHENYL-PYRIDINO [4,3-d] [1,3] DIOXINS.

		÷														
No.	7-(Phenylamino)-pyrano dioxin (II)		Quantity	Sodium/	7-Hydroxy-6-phenyl-pyridino [4,3-d][1,3] dioxin (III)	Yield %	m.p. C°	Molecular Formula	Analysis							
			(g)	Phenol					Found			Required				
	R'	R"						4.	С	Н	Ν	Ĉ	Н	N		
1.	CH ₃ -	C ₂ H ₅ -	3.0	0.9g/30ml	20-ethyl-2-methyl-7-hydroxy- 6-phenyl-pyridinodioxin	80	210	C ₁₆ H1 ₁₅ NO ₅	63.8	4.8	4.5	63.8	4.9	4.6		
2.	CH3-	C ₆ H ₅ -	3.5	0.9g/30ml	7-hydroxy-2-methyl-2, 6- diphenyl-pyridinodioxin	84	124	C ₂₀ H ₁₅ NO ₅	68.8	4.1	4.4	68.7	4.9	4.0		
3.	C2H5-	C ₆ H ₅ -	3.6	1.0g/30ml	2-ethyl-7-hydroxy-2,6- diphenyl-pyridinodioxin	42	159	C ₂₁ H ₁₇ NO ₅	69.6	4.6	3.7	69.9	4.6	3.8		
4.	CH ₃ -	p-Cl-C ₆ H ₄ -	3.8	1.0g/30ml	2-(chlorophenyl)-7-hydroxy- 2-methyl-6-phenyl-pyridinodioxin	57	146	$C_{20}H_{14}NO_5Cl$	62.7	3.3	3.4	62.5	3.6	3.6		
5.	CH ₃ -	CH ₃ (CH ₂) ₃ -	3.5	0.9g/20ml	2-butyl-7-hydroxy-2-methyl- 6-phenyl-pyridinodioxin	65	157	$C_{18}H_{19}NO_5$	65.7	5.4	4.2	65.6	5.7	4.2		
6.	C ₂ H ₃ -	CH ₃ (CH ₂) ₂ -	3.5	0.9g/20ml	2-ethyl-7-hydroxy-6-phenyl 2-propyl-pyridinodioxin	63	158	C ₁₈ H ₁₉ NO ₅	65.8	5.7	4.1	65.6	5.7	4.2		
7.	C ₃ H ₂ -	C ₃ H ₇ -	3.5	0.9g/20ml	7-hydroxy-6-phenyl-2,2- dipropyl-pyridinodioxin	46	245	C ₁₉ H ₂₁ NO ₅	66.3	6.0	4.1	66.4	6.1	4.1		

77

M.A. BUTT, R. KEMAL, A. SALAM AND A.AKHTAR

Pyridino [4,3-d][1,3]-dioxin(III) UV Light absorption 95% MeOH IR Absorption max cm⁻¹ mainly for No. R' R" $\lambda_{max}(nm)$ the 3-6 µ region (KBr disc) Loge C-O(4)(cm⁻¹) $C-O(5)(cm^{-1})$ 3.90 1700 1. CH,-C,H-310 1650 2. 4.26 CH₂-CH-310 1700 1655 4.21 3. C₂H_e-C₆H₅-312 1705 1660 4.79 4. CH, p-CIC₆H₄-310 1700 1650 5. CH₂ $n-C_4H_0$ -310 4.06 1723 1668 6. C2H5n-C3H7-308 4.33 1702 1662 7. n-C₃H₇n-C3H7-310 4.29 1705 1655

TABLE 4. UV AND IR SPECTRA OF PYRIDINO [4,3,-d][1,3] DIOXIN (III)

nylamino)-4,5-dioxo-pyrano[4,3-d][1,3] dioxins (II) which underwent the phenoxide rearrangement to yield the corresponding2,2-disubstituted-7-hydroxy-4,5-dioxo-6phenylpyridino[4,3-d] [1,3] dioxins (III). Thus the compound 2-ethyl-2-methyl-4, 5-dioxo-7-(phenylamino) pyrano [4,3-d] [1,3]dioxin (II, R'=CH₃, R"= C₂H₅) on the reaction with sodium phenoxide in phenol gave an enolic product C₁₆H₁₅NO₅ (III, R"=CH₃, R"=C₂H₅) m.p. 210°C, which dissolved in aq. NaHCO₃ and was isomeric with the starting material. Other 7-(phenylamino)-pyranodioxins (II) gave similar isomeric products (III).

These pyridinodioxins (III) absorbed characteristically in the UV region 308-312nm (Table 4). The IR absorption peak due to the ester carbonyl group at position 4 appeared at 1700-1725 cm⁻¹ which is apparently unbonded, while the peak due to carbonyl at position 5 appeared at 1650-1670 cm⁻¹. This is in concordence with the study of IR spectra of similar compounds carried out by Saleh and Hammad [13,14]. Treatment of the product (III, R'=CH₃, R''=C₄H₉) with diazomethane in chloroform having λ_{max} 308nm gave a negative FeCl₃ test.

The OH group of the pyridinodioxin (III, $R'=C_2H_5$, $R''=C_3H_7$) reacts with POCl₃ to yield the corresponding chloro derivative (IV) $C_{12}H_{13}O_5Cl$, m.p. 160°C having UV absorption at λ_{max} 324nm which shows a shift of 12nm towards the visible region as compared with the parent compound.

Bromination of the compound (III, R'= C_2H_5 , R''= C_6H_5) with bromine in chloroform yielded the bromo derivative (V) $C_{21}H_{16}NO_5Br$, m.p. 124°C showing a UV absorption λ_{max} at 312nm.

These 7-hydroxy pyridinodioxins also formed addition products with morpholine. For instance, the product (III, $R'=C_2H_5$, $R''=C_3H_7$) when reacted with morpholine gave an adduct with molecular formula $C_{22}H_{28}N_2O_6$, m.p. 193°C, λ_{max} 311nm which was soluble in water and which could be converted to the parent compound by the acidification of its aqueous solution.

References

- 1. Chichibabin, Bull. Soc. Chim. France, 4(5), 1326 (1937).
- R. L. Frank, J. R. Blengen, R. J. Dearborn, R. L. Meyers and F. E. Woodward, J. Am. Chem. Soc., 68, 1368 (1946).
- 3. Durikopf and Gollsch, Ber., 23, 1110 (1890).
- R. M. Acheson (Ed), "An Introduction to the Chemistry of Heterocyclic Compounds, (John Wiley & Sons, New York, 1976), 3rd ed. pp. 271-272.
- French Patent, 1,339, 175, Assigned to J.R. Giegy, S. A. (1963).
- J. D. Crum and C. H. Fuchsman, J. Heterocycl. Chem., 3, 252 (1966).
- 7. R. Albrecht and G. Kresze, Chem. Ber., 98, 1431 (1965).
- T. B. Windholz, L. H. Peterson and G. J. Kent, J. Org. Chem., 28, 1443, (1963).
- G. Stork, M. Ohashi, H. Kamashi and H. Hakisawa, J. Org. Chem., 36, 2784 (1971).
- 10. S. J. Davis and J. A. Elvidge, J. Chem. Soc., 4109 (1962).
- M. A. Butt, R. Kemal, A. Salam and A. Akhtar, Pak. j. sci. ind. res., 33(1-2), 27 (1990).
- 12. M. A. Butt, R. Kemal, A. Salam and Ghazala Mumtaz, Pak. j. sci. ind. res., **35** (9), 325 (1992).
- R. M. Saleh, H. M. Baker and O. E. A. Mustafa, Pak. j. sci. ind. res., 34, 417 (1991).
- M. M. Hammad, S. A. Said, A. F. El-Farargy and G. M. El-Gendy, Pak. j. sci. ind. res., 36, (6-7), 228 (1993).