Short Communication

Pak. j. sci. ind. res., vol. 39, nos. 9-12, September-December 1996

Complexes of Zr(IV) and U(VI) with Trans- [14]-diene

M.SHAMSUL ISLAM, M.T.H. TARAFDER AND L.A. BANU Department of Chemistry, Rajshahi University Rajshahi 6205, Bangladesh.

(Received April 3, 1995)

Some new complexes of zirconium (IV) and uranium (VI) containing a tetraazamacrocycle and other organic ligands have been synthesized and characterized. The complexes have composition, [Zr(L). 2L'] (NO₃)₄, [Zr(L).en] (NO₃)₄ and $[U(O)_2 (L).L']$ (NO₃)₂; [L=trans-(14)-diene; en= ethylenediamine; L' = pyridine (Py), triphenylphosphine oxide (OPPh₃) or triphenylarsine oxide (OAsPh₃)].

Transition metal complexes with macrocyclic ligands are important for their distinctive coordination chemistry and biological significance [1-5]; but macrocyclic complexes of heavier metal ions are lacking so. The synthesis and characterization of some complexes of Zr(IV)and U(VI) with trans (14)-diene containing Py, en, OPPh₃ and OAsPh₃ as auxiliary ligands are reported here.

Reagent grade chemicals of (Merck) were used. Ethanol was purified as reported earlier [6]. Trans. (14)-diene (C_{16} H_{32} N_4) as its dihydrobromidedihydrate salt of the structure as shown in Fig. 1 was prepared following a method reported in the literature [7].

Fig. 1. L.2HBr . 2H,O

Complexes 1,3 and 4, $[Zr(L).2L'] (NO_3)_{4^{\circ}} [L=C_{16}H_{32}N_4;$ $L'=Py, OPPh_3 \text{ or } OAsPh_3$.]. To the solution of $Zr(NO_3)_4$. $6H_2O$ (0.002 mol) in water (30 cm³) was added to the solution of L.2HBr. $2H_2O$ (0.002 mol) in absolute ethanol (60 cm³) followed by the addition of L'(0.004 mol) in absolute ethanol (20 cm³). The complexes formed instantaneously were separated and washed successively with water and ether and finally dried *in vacuo* over P_4O_{10} .

Complexes 2, [Zr(L).en] (NO₃), $[L=C_{16}H_{32}N_4;$ en=ethylenediamine]. A solution of $Zr(NO_3)_4$. $6H_20$ (0.002 mol) in water (40 cm³) was added to a solution of L.2HBr. $2H_20$ (0.002 mol) in absolute ethanol (60 cm³) and treated with a solution of ethylenediamine (0.002 mol) in absolute ethanol (30 cm³). The white product obtained was filtered, washed and stored as above.

Complexes 5 and 6, $[U(O)_2(L).L'](NO_3)_{2'}$ $[L = C_{16}H_{32}N_4;$ $L' = Py \text{ or } OPPh_3]$. A solution of $U(O)_2 (NO_3)_2.6H_20 (0.002)$ mol) in absolute ethanol (20 cm³) was added to a solution of L.2HBr. 2H₂0 (0.002 mol) in the same solvent (60 cm³). A solution of L' (0.002 mol) in absolute ethanol (15 cm³) was then added to the above mixture. The mixture was heated on water bath at 45°C for 5 min.. After cooling for some time a yellow product was obtained which was separated and stored as above.

IR spectra (as KBr discs) were recorded on a Pye-Unicam SP3-300 infrared spectrophotometer. Conductivities of 10⁻³ mol dm⁻³ solutions of the complexes were measured at ~25°C in dimethylsulfoxide (DMSO) using a dip-cell with platinized electrodes and a PTI-18 digital conductivity meter.

The analytical and conductivity data and the infrared spectral data are given in Tables 1 and 2 respectively. The experimental data are consistent with six fold coordination of Zr(IV) while U(VI) ions are seven fold coordinated. Complexes 1--4 are 4:1 while 5 and 6 are 2:1 electrolytes in DMSO.

In the IR spectra of the complexes, the υ (NH) and υ (C=N) bands of the free ligand are shifted to lower frequencies indicating coordination of the macrocycle through its N atoms; the bands found at~1380,~810 and ~720 cm⁻¹ are due to ionic nitrates [8,9] outside the coordination spheres. Again, lower υ (C=N), υ (P=O) and υ (As=O) values than the corresponding free auxiliary ligand values of 1610 cm⁻¹ [10-14,19], 1192 cm⁻¹ [15] and 880 cm⁻¹ [16] together with the observed υ (M-N) and υ (M=O) modes suggest coordination through N of Pyridine and O of OPPh₃ and OAsPh₃ [17-20]. Complex 2 shows υ (NH₂) bands at 3360 and 2920cm⁻¹ while 5 and 6 display υ (U=O) modes [17,21,22] at 920 and 930 cm⁻¹. Zr (IV) complexes were assumed to have octahedral but υ (VI) is a distorted pentagonal bipyramidal structure [23]; the latter are coloured due to v to v transition [23].

Key words: Heavy metals, Complexes, Macrocyclic ligand.

References

- B. F. Liang, D. W. Margerum and C. S. Chunng, Inorg. Chem., 18, 2001 (1979).
- R. W. Hay and P. R. Norman, Trans. Met. Chem., 3, 232 (1980).
- R. W. Hay and M. T. H. Tarafder, J. Chem. Soc. Dalton Trans.,823 (1991).
- 4. D.H. Busch, Ac. Chem. Res., 11, 392 (1978).

SHORT COMMUNICATION

TABLE 1. ANALYTICAL DATA AND OTHER PHYSICAL PROPERTIES OF THE COMPLEXES.

General			(Calc. (Found) %		Conductance
Compound	No	Colour	С	Н	N	Ω^{-1} cm ² mol ⁻¹
$[Zr(L).2Py](NO_3)_4$	1	White	40.15(40.01)	5.44(5.43)	18.01(18.00)	118
$[Zr(L).en](NO_3)_4$	2	-do-	31.80(31.65)	5.93(5.65)	20.61(20.43)	121
[Zr(L).20PPh ₃](NO ₃) ₄	3	-do-	53.09(53.00)	5.31(5.25)	9.53(09.41)	130
$[Zr(L)20AsPh3](NO_3)_4$	4	-do-	49.41(49.31)	4.94(4.75)	8.86(08.59)	125
$[U(O_{2})(L).Py](NO_{3})_{2}$	5	Yellow	33.47(33.41)	4.95(4.82)	13.01(13.00)	63
$[U(0_2)(L)OPPh_3(No_3)_2]$	6	-do-	42.86(42.65)	4.97(4.77)	8.82(08.75)	60

L=trans-[14]-diene ($C_{16}H_{32}N_4$).

TABLE 2. IR(γ max in cm⁻¹) Spectral Data of the Ligand and Complexes.*

Com- pound	υ(N-H)	υ(C=N)	υ(P=O)	υ(M-O)	υ(M-N)	Other bands
L	3460s	1660s				
1	3380m	1585m			370sh	1375s,830w,710sh
2	3360br	1620m			32ow	1375s,825w,710sh
3	3380m	1610m	860m	470m	350w	1370s,805w,710m
4	3380br	1610m	1110m	520w	380w	1375s,815w,730m
5	3400br	1585m			320w	1380s,820m,710sh,
	3180m					920s
6	3410m	1580s	1125vs	455m	325w	1375s,800m,720s, 930s.

*The band intensities are denoted by vs, s, m, w, br and sh meaning very strong, strong, medium, weak, broad and shoulder respectively. +See Table 1

- 5. R.W.Hay, I.Fraser and G.Ferguson, J. Chem. Soc. Commun., 1714 (1987)
- 6. M. T. H. Tarafder, M. Shamsul Islam, P. Bhattacharjee and S.B.Quraishi, Pak. J. sci. ind. res., 37 (4), 126 (1994).
- 7. R.W.Hay, G.A. Lawrance and N.F.Curtis, J.Chem. Soc. Perkin, 592 (1975).
- M.T.H.Tarafder, M.A.J. Miah, R.N. Bose and M.A. Ali, J. Inorg. Nucl. Chem., 43, 3151 (1981).
- 9. B.M. Catehouse, S.E. Livingstone and R.S. Nyholm, J. Chem. Soc., 4222 (1957).
- 10. R.G. Inskeep, J. Inorg. Nucl. Chem., 24, 763 (1962).

- 11. A.A. Schilt and P.C.Taylor, J. Inorg. Nucl. Chem., 9, 217 (1959).
- 12. M.Monoyama, Inorg. Chem. Acta, 13, 5 (1975).
- S.E. Jacobson, R.Tang and F. Mares, Inorg. Chem., 17, 3055 (1978).
- H.Minoun, M. Oostel, F. Casabianca, J. Fischer and A. Mitschler, Inorg. Chem., 20, 3992 (1981).
- D. Brown, J. Hill and C.E.F.Richard, J. Chem. Soc. A., 499 (1970).
- J.Burnstein, M. Halmann, S. Pinchas and D. Samuel, J. Chem. Soc., 821 (1964).
- A.D. Westland and M. T.H. Tarafder, Inorg. Chem., 20, 3992 (1981).
- A.D. Westland and M.T.H. Tarafder, Inorg. Chem. 21, 3228 (1982).
- 19. M.T.H. Tarafder and M.A.L. Miah, Inorg. Chem, 25, 2265 (1986).
- M.T.H. Tarafder and A. Ahmed, Ind. J.Chem., 25A, 729 (1986).
- 21. M.T.H. Tarafder, M.B.H. Howlader, B.Nath, R. Khan and A.A.M.A. Islam, Polyhedron, 8, 977 (1989).
- 22. M.T.H. Tarafder and A.A. M.A. Islam, Polyhedron, 8, 109 (1989).
- F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry (John Wiley & Sons, Singapore, 1988) 5th edn., pp.987,992-993.