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SOME NEW EXACT SOLUTIONS OF EQUATIONS OF MOTION OF AN INVISCID
COMPRESSIBLE FLUID VIA ONE PARAMETER GROUP
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Some new exact solutions of equations governing the flow of an inviscid compressible fluid are determined using
one parameter group for an arbitrary state equation.
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Introduction
The present work describes some new exact solutions of

equations governing the flow of an inviscidcompressible fluid
for an arbitrary state equation. The steady plane flow of an
inviscid compressible fluid, in the absence of heat conduction,
is governed by the.system of five non-linear partial differential
equations [1].

(pu), + (pv\ = °
puux + pvux = -Px

puvx + pvvx = -Py •••••••••••••••••••••••••••••••••••••••••••••••••••••.• (1)

us + vs = °x y

P = P (p, s)

where u, v are the velocity components, P the pressure, p the
density, and s the specific entropy of the fluid. On introducing

pu ='Jfy
pv = -'Jfx ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• (2)

the system (1) is replaced by the following system

P = P (p, s)

of four equations in four unknown functions 'Jf, P, R, s, as
.functions of ~( = x + y) and ll( = x - y). In above, 'Jf is the
streamfunction and the function R is given by

R=I/p (4)

Once a solution of system of equations (3) is determined, the
density p is determined from equation (4).

One-parameter group and transformation offlow equa-
tions. In this section, system (3) of non-linear partial differen-
tial equations is transformed [2] into a new system of ordinary
differential euqations using one-parameter group of trans for-
mations. General group theory that is used to determine some
exact solutions of system (3) is given here briefly [2~6].

If T, is a group consisting of a set of transformations
defined by

- -
P = a'P, R = a'R, s= aq s

with parameter a:t 0, then the invariants of group rl for system
(3) are

R = llul H(e), 'Jf = llu2 Q(e), P = llu3 T(e), e = ~ll

s = 1l!l4 V (e) (5)

provided

Ct.3= 2Ct.2 + Ct.l- 2 (6)

In equation (5)

The invariants (5) orr, transform system (3) into the follow-
ing system of ordinary differential e'luations iri the four
unknown function H, Q, T, V of e are:

T' = 8[H {(1-Ct.2)eQ'2 + Ct.2eQQ" + Ct.lQ' (Ct.2Q-eQ')} +
H' {Ct.2Q(eQ'-Ct.2Q)}] : (7.1)

rt.3T - eT' = 8 [H {Ct.2QQ" - (Ct.z-l)Q'2 - Ct.
I
Q'2} +

Ct.2QQ'H'] (7.2)



102 R.K. NAEEM AND MJ. ANSARI

(X4VQ'=(X2QV' (7.3)

Once a solution of the system (7) of ordinary differential
equations is determined, the streamfunction \jf, the density p,
the entropy s and pressure P are determined employing equa-
tions (4-5).

Solutions of the flow equations. The solutions of the
system (7) consisting of three ordinry differential equations
have been determined here. In order to determine the solutions
of system (7) for an arbitary state equation, the system (7)
becomes underdetermined. However, system can be deter-
mined by assuming the function H to be constant or by finding
a differential euqation for the function H and then applying
on it the particular methods for determining the solutions of
ordinary differential equations to obtain forms for the
function Q.

The differential equation for H is obtained by eliminating
the function T from equations (7.1-7.2)

When (X3=0, the equations (7.1-7.2), on eliminating T,
give

(D + B8)H' + (A8 + C)H = 0 (8)

This is the required differential equation for H for (X3= 0 when
(X3:;:'0, equation (7.2), on using equation (7.1), gives

(X3T= 8 [(A8 + C)H + (D + 8B)H'] (9)

Equation (9) and (7.1) imply that

(D+8B)H" + (8A+8B'+C+D'+(l-(X.3)B]H' +
[8A+C'+(I-(X3)A]H = 0 (10)

where in equation's (8-10),

Equation (10) is the required differential equation for the
function H for (X3:;:.0
Integration of equations (7.1) and (7.3) yield

T=8f[AH-BH'] d8+CI m.n

v = C
2

Q04fCl.2, (X2:;:'0 (11.2)

where CI and C2 are arbitrary constants.
The equations (11.1) and (11.2) give the general expressions
for the functions T and V for the flow equations. To determine
the solutions of equations (8) and (10), equations (8) and (10)
are treated separately as two cases, case-land case-II, respec-
tively.

Case I:

The differential equation (8) is a linear differential equation in
H and the function H can easily be determined by integrating
it once. The integration of (8) for

D + 8B :;:.0, yields

H =A, expJ :: ::: de (12)

where Al is an arbitrary constant. In equation (12) the function
Q(8) on which the functions A, B, C, D, depend is such that

Q':;:.O (13)
and

Q,(X8U2 (14)

The reason that the function Q(8) can not have the form
defined in equations (13-14) is that these forms of Q(8) give
U=V.Hence P =P andP can not be a function of O only unless

x y

a trivial constant.
Since the function Q(8) in equation (12) can assume a

large number offorms, except the forms defined by equations
(13-14), a large number of solutions of the flow equations for
the case (X3=0can be constructed.

However, in some cases, forms for the function Q(8) can
be determined by assuming appropriate forms for the function
H(8) in equation (8), e.g. equation (9), on using

H = 8m, gives

(l-(XI-(X2)8(1+82)Q'2 + (X2«(XI+m)82QQ'+ mnzQQ' +

(X28(1+82)QQ" - m(X228Q2= O (ql)

This differential equation has a solution when

1- (XI- (X2= 0 which is determined as follows:
Recalling that for A,3= 0, (XIand (X2satisfying the equation

This equation and the equation 1- (XI- (X2= 0 give
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The differential equation (q.), using a,=O, a2=1, gives

Substituting Q =82 X (8) in the above equation,

which can be rewritten as

8\1+82)X" + [1+m)82 + (m+3)84]X' + (382+84)X' +
[2(1 +m)8 + (m+2)83] X = 0

The right hand side ofthe above differential equation becomes
an exact differential when m = 2. Taking m =2,

Which on integrating once provides

wherein D, is an arbitrary constant. This is a linear differential
equation in X whose solution is given by

wherein D2 is an arbitrary constant. Using this expression of
X in Q=82 X(8), we get

D, D, DP+82
)

Q(8) = - + -- (l +82) tan-'(8) + ---
2 28 8

When the function H is constant, the equation (8) gives

Equation (q2) is a non-linear differential equation in Q.
To determine the solutions of the equation (q2)' multiply
equation (q2) by the factor (l +82)\ which gives

(l-a,-a2)(l+82t+'Q'2+ a2Q[(1+82t+'Q" +

a,8(1+82))..Q' = 0

which can be rewritten as

A=(aJ2)-1

This equation, on integration, provides

2-a,
In Q = --In [(1+82)<l'/2Q']+D3

a,

where D3 is an arbitrary constant. The above equation, by
taking D3 = In D4, gives

where D4 (>0) is a constant. When a,:tl, the solution is

2(a,-I)
+---D

(a,-2) s

where D, is an arbitrary constant and a,:t.2. The indefinite
integral in the above expression for Q can easily be calculated
using table of indefinite integrals [7] for given a,. Since a, can
assume infinite many values, infinite number of expressions
for Q can be constructed.

When a,=I, the solution is

where D6 and D7 are arbitrary constants.
Adding and subtracting the term a,(l+SZ) Q'2 in equation (q.)
give

azCI+82)Q'2 + ap+SZ)QQ" + (l-a,-2a) (1+82)Q'2 +

a,!:x28QQ' = 0

Which, on rearranging the terms, gives

[(1+82)Q]'

(1+82) Q
=- --

QQ' 2
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This, after twice integration, gives

1±-J5
where DR and D9 are arbitrary constants and <XI=---

2
The case D + 8B = 0, for equation (8) is discarded since it leads
to the trivial solution.

Case II.

The function Hin equation (10) is determined by employ-
ing the particular methods for determining the solution of sec-
ond order ordinary differential equations as follows:
The equation (10) is an exact differential equation provided

<x/B' - A) = ° (15)

Since <X3can not be zero, therefore

B'=A ~ (16)

Equation (16), utilizing the definition of the functions A and
B, gives

This holds for all 8 provided

<X3= -lor Q' = ° or -8Q' + <X2Q= °
The last two cases are discarded due to the same reasoning as
attributed to the equations (13-14). When <X3=-1 the function
Q(8) is arbitrary and <XI'<X2satisfy

2<X2+<X1= 1 (17)

The first integral of equation (10) is

(D+8B)H'+(8A+C+B)H=b, (18)

where b. is an arbitrary constant. When D +8B:;t:O,the general
solution of (18) is

H" e·"'" [J D:'eB .""" de + bl·················(l9)

J
8A +C+"B

where F,(8) = d8
D+8B

and b2 is an arbitrary constant. In equation (19), the function
Q(8) is arbitrary function and therefore, a large number of
solutions of equation (18) can be constructed. For example,
taking

the equation (19) gives
b,

H = -- 8-AI[Z(8)rA3 f 8AI-2m+l [Z(8)]A3-1 d8

<X2a2

+ b/<x2a2) -A38 -AI [Z(8)rA3 (20)

wherein Z(8) = m + (m - <X2)82 and a -:t- 0, and m are arbitrary
constants.

The indefinite integrals in equation (20) can easily be
evaluated using table of indefinite integrals [7] for given m
and <X2.When m is negative, <X2~ m in equation (20). In
equation (20).

-rn + (2m-1)<X2
A,=-----

A = a2 [2m2 - 2('( 2 - rri2<x + mo; <X]2 ""2 1 I 2

when D + 8B = 0,

Q = b, (l+82yX2/2 •.•.•.•.•.•.•.•.•.•.•.......•.•.•.•.•.••.•.•.•.•.•.•.. (21)

where b,is an arbitrary constant. The streamfunction 'l' for Q
given by equation (21) is

and 'l' = constant represent a family of concentric circles
defined by

The equation (18), utilizing equation (21) gives
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bl
H .....(22)

a./b/ [{ 1+(2a.2+2a., - 3)62}(1+62)a2·2+62(2+a.,6)(1+62)a2-'_ (1+6)a2

when H is constant, the equation (10) gives

[(I-al-a2+al~) + (1-~)(I-al-a2)]SQ'2+

(2-2al- (2)(1+S2)Q'Q" + ~(al-a3+2) S QQ" +

ap+S2)QQ'" + al~(1-a3)QQ' = 0 (23)

Using a3 = 2a2+al-2 in the above equation,

[(l-al-a2+ala2) + (3-al-2a)(1-al-a2)]SQ'2+

(2-2al- (2)( 1+S2)Q'Q" + ~(4- 2~) S QQ" + ~(1 +S2)QQ'"

+ al~(3-a,- 2(2)QQ' = 0 (24)

A solution of this non-linear differential equation for

a3 = 1, is

Q = 2 (1 + S2) (25)

The streamfunction 'II for Q defined by (25) is

For", = constant = el, x :;:.y, the streamline are circles defined
by

e 2
I

32

Note that when x=y tile streamfunction is singular i.e. it
becomes infinite at x=y. Physically it means that there are
either sources or sinks or both situated on the line y=x. Most
of the solutions that have been presented for the cases a3=0
and a3:;e0,contain the arbitrary function Q(S) and this arbi-

trariness of Q(S) enables to construct a large number of solu-
tions. Now some forms for Q(S) are given which represent
physically possible flow situations. For example taking Q(S)
equal to ~1+~2S).+~3(1+S2) and (~4-~5S)[~6+~!(1+S2) and
appropriately choosing the constants ~I '~2'~3'~ 4'~5'~6'~7'A.,
give (i) flows with stramline a fmily of straight lines inclined
to the x-axis, (ii) flows with streamlines a family of ellipses,
(iii) flow with streamlines a family of hyperbolae, (iv) flow
with streamlines a family of concentric circles, (v) Hiemenz
flow, and (vi)flow due to a doublet situated at the origin

. Conclusions
Employing one parameter group, some new exact solu-

tions of asystem of partial differential equations governing the
motion of an inviscid compressible fluid are determined for an
arbitrary equation of state. When the expression D(S) + SB(S)
is non-zero, the solutions for a3=0 and a3:;:.0 contain the
arbitrary function Q(S)which enables to construct a large
number of solutions to the flow equations. The work presented
herein increases the number of known exact solutions to the
flow equations and provides new types of singular solutions
admitted by the flow equation which are not determinable
through other methods.
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