Biological Sciences Section

Pak. j. sci. ind. res., vol. 38, no. 7, July 1995

RESIDUAL EFFECT OF STOMP 330E (PENDIMETHALIN) ON THE SUCCEEDING CROPS

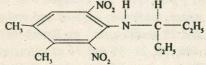
M. S. ZAKI, S. M SHAH, AND D.B. MUHAMMAD Central Cotton Research Institute, Multan-60500, Pakistan

(Received April 11, 1992; revised March 14, 1995)

The field investigations were carried out for three consecutive years from 1984-85 to 1986-87 at the Agronomic Research Area, Central Cotton Research Institute, Multan to see the residual effect of Stomp 330 (Pendimethalin) [N-(1-ethylpropyl)-3, 4-dimethyl-2, 6-dinitrobenzenamine] at 1.2 Kg/ha on different crops following its treated and untreated plots in cotton. From three years average it was concluded that there were no significant differences between Stomp 330E treated and untreated plots of the succeeding crops. However, Stomp 330E treated plots gave higher number of seedlings/m², plant height and grain yields Kg/ha than untreated plots. Thus the use of Stomp 330E for weed control in cotton was safe and had no residual effects on the succeeding crops viz. wheat, maize, sunflower, soybean and mung.

Key words: Stomp 330E carryover, Succeeding crops, Grain yields, Seedlings, Plant height.

Introduction


Dinitroanilines form a group of herbicides used for selective weed control in cotton, legumes and vegetables etc. Herbicides of this group are volatile and photodecomposable. They are active through the soil and applied as pre-plant soil incorporation (PPI) treatment against weed germination. Persistence of this group of chemicals in the soil may only be for a few weeks at low doses but at higher doses activity was detected even after 12 months. Stomp 330E (Pendimethalin), one of the Dinitroanilines group of herbicides is comparatively cheap and was found to provide good broad-leaved weed control especially "itsit" (*Trianthema portulacastrum* L.) [16].

The residual effect of a number of herbicides had been studied in detail. Most of these do not exhibit any adverse effect on succeeding crops, though a few retard the germination of some crops (1-3,5-15,17-19). Certain herbicides exerts a selective action in being antagonistic to a few crops while harmless to others [4,16].

The present project is undertaken to find out the effect of Stomp 330E (Pendimethalin) carryover, if any, on the succeeding crops.

Materials and Methods

The field investigations were undertaken for three consecutive years from 1984-87 at the Agronomic Research Area, Central Cotton Research Institute, Multan to find out the residual effect of Stomp 330E (Pendimethalin) N-(1ethylpropyl)-3, 4-dimethyl-2, 6-dinitrobenzenamine on succeeding crops. There were two plots as untreated and treated with Stomp 330E in cotton. Stomp 330E (1.2 Kg/ha) was mixed thoroughly in water (500 lit/ha) and sprayed on the soil till the water reached upto 5cm depth. Knapsack sprayer, fitted with jet type nozzles, was used for spraying purpose. After cotton harvesting, each year crops were randomized in the same main plots and herbicides in the same sub plots of cotton. The sub plot size was $13.7 \times 7.6m$. The experimental design was factorial. The treatments were as under:

Wheat, Maize, Sunflower, Soybean and Mung each in previously Stomp 330E treated (H_1) and untreated (H_0) plots with 3 replications. Other cultural operations like weeding, hoeing, irrigation and plant protection measures were kept uniform in all the treatments for all three years. The recommended doses of P₂O₅ and N of each crop were added as and when required. The details of varieties, sowing dates, seed rates and spacings were as under Table 1.

		TAE	ILE 1.		
Сгор	Year	Varieties	Sowin g dates	Seed-rate Kg/ha	Spacing (cm)
Wheat	1984-85	Blue Silver	27.12.1984	120	22.5x0.0
	1985-86	Blue Silver	18.12.1985	120	
	1986-87	Pak-81	22.12.1986	120	
Maize	1984-85	Neelam	18.2.1985	30	75.0x22.
	1985-86	Neelam	12.2.1986	30	н н
	1986-87	Neelam	12.2.1987	30	. 11 . 11
Sunflower	1984-85	Cargil	31.1.1985	10	75.0x22.
	1985-86	Cargil	3.2.1986	10	
	1986-87	NK-212	3.2.1987	10	
Soybean	1984-85	William-82	21.2.1985	100	30.0x7.5
	1985-86	William-82	11.2.1986	100	
	1986-87	William-82	3.2.1987	100	
Mung	1984-85	M-28	27.2.1985	20	30.0x7.5
and the second	1985-86	M-6601	20.2.1986	20	
	1986-87	NM-121-25	23.2.1987	20	9 M (1.15 M)

The data for the following characters were recorded 1. seedlings $(/m^2)$; 2. grain yields (Kg/ha) and 3. plant height (cm). The analysis of variance was done and significant differences among the treatments were determined by protected LSD test at 5% probability level as described by Steel and Torrie, [20].

Results and Discussion

Grain yields. Averaged over three years all the crops i.e. wheat, maize, sunflower, soybean and mung from Stomp 330E treated plots gave higher grain yields (4057, 3366, 1369, 1238 and 406 Kg/ha respectively) than untreated plots (4004, 3338, 1326, 1142 and 379 Kg/ha respectively) (Table 2). However, treatmental difference was non-significant, statistically. Even, crop herbicide interaction was also insignificant. It may be concluded that Stomp 330E is safe to use in cotton because of the absence of residual effect on grain yields of succeeding crops. These findings confirm with many of the earlier findings.

Seedling emergence. Crops planted on Stomp 330E treated plots resulted in a higher seedling emergence than untreated plots (Table 3). Averaged over three years data, wheat, maize, sunflower, soybean and mung gave 408, 39, 31, 88 and 73 seedlings/m² on Stomp 330E treated plots against 406, 38, 29, 85 and 71 of untreated plots, respectively. There was no difference between treatments, statistically. Crop treatment interaction was also non-significant. From these results it was concluded that application of Stomp

TABLE 2. RESIDUAL EFFECT OF STOMP 330E ON THE YIELD OF DIFFERENT CROPS.

		S Draile		Crops				
Year/Treatment		Wheat	Maize	Sunflower	Soybean	Mung		
		(Grain yield Kg/ha)						
1984-85	H	3637	3121	1346	1139	435		
	H,	3663	3150	1364	1286	475		
1985-86	H	4642	2945	1352	900	385		
	H,	4692	2952	1417	967	415		
1986-87	H	3733	3947	1280	1387	316		
+ astrony	H,	3817	3997	1328	1460	327		
Average	1984-85	3650	3136	1355	1213	455		
	1985-86	4667	2948	1384	933	400		
	1986-87	3775	3972	1304	1423	321		
Mean effect	ts for							
treatments	H	4004	3338	1326	1142	379		
AND MONTH LOL	H	4057	3366	1369	1238	406		
Critical diff								
Year	and the second second	93*	98*	N.S.	152*	75*		
Treatments		N.S.	N.S.	N.S.	N.S.	N.S.		
Interaction		N.S.	N.S.	N.S.	N.S.	N.S.		

Figures with the same letter do differ (P $\le .05$).N.S = Non significant, * = Significant at P $\le .05$, H₀ = No Stomp 330E application, H₁ = Stomp 330E @ 3.7 lit/ha application at seedbed preparation. 330E in cotton was useful and its carryover in the soil did not affect the seedling emergence of the succeeding crops. These results are in agreement with the findings of Warfa and Noor [4]; Karpenko *et al.* [11]; Aleev [13]; Catizone *et al.* [14]; Subramanian and Ali [17] and Berayon [19]

TABLE	3.	RESIDUAL	EFFECT	OF	STOMP	330E	ON	THE	SEEDLING	is
			OF DIF	FER	ENT CR	OPS.				

	- de anima							
		Crops						
Year/Treatment		Wheat	Maize	Sunflow	wer Soybean	Mung		
-		(No. of seedling/m ²)						
1984-85	H	375	43	32	95	59		
	H	370	41	33	96	61		
1985-86	Ho	421	33	21	84	98		
	H,	424	35	22	85	99		
1986-87	Ho	424	38	32	76	55		
	H,	430	41	37	83	58		
Average	1984-85	372	42	32	96	60		
	1985-86	422	34	22	85	98		
	1986-87	427	40	35	80	57		
Mean effect	ts for							
treatments	H	406	38	29	85	71		
	H	408	39	31	88	73		
Critical diff								
Year		18*	5*	3*	8*	18*		
Treatments		N.S.	N.S.	N.S.	N.S.	N.S.		
Interaction		N.S.	N.S.	N.S.	N.S.	N.S.		

Figures with the same letter do differ ($P \le .05$). N.S. = Non significant, * = Significant at $P \le .05$, H_0 = No Stomp 330E application, H_1 = Stomp 330E @ 3.7 lit/ha application at seedbed preparation.

TABLE 4.RESIDUAL EFFECT OF STOMP 330E ON THE PLANT HEIGHT OF DIFFERENT CROPS.

				Crops		
Year/Treatment		Wheat	Maize (P	Sunflower lant height c	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mung
1984-85	HO	72	224	103	21	26
	HI	75	224	106	21	29
1985-86	HO	60	219	115	22	20
	HI	64	232	121	24	21
1986-87	HO	86	226	161	28	23
	HI	87	228	165	30	20
Average	1984-85	74	224	105	21	28
	1985-86	62	226	118	23	20
	1986-87	86	227	163	29	22
Mean effect	ts for					
treatments	HO	73	223	126	24	23
	HI	75	228	131	25	23
Critical diff	erences					
Year		7*	N.S.	7*	4*	3*
Treatments		N.S.	N.S.	N.S.	N.S.	N.S.
Interaction		N.S.	N.S.	N.S.	N.S.	N.S.

Figures with the same letter do differ ($P \le .05$), N.S. = Non significant, * = Significant at $P \le .05$, $H_0 = No$ Stomp 330E application, $H_1 =$ Stomp 330E @ 3.7 lit/ha application at seedbed preparation. *Plant height:* Crop plants on Stomp 330E treated plots were taller than untreated plots (Table 4). On the average basis of three years data wheat, maize, sunflower, soybean and mung plants attained 75, 228, 131, 25 and 23 cm. Plant height on Stomp 330E treated plots as compared with untreated plots having 73, 223, 126, 24 and 23 cm plant height, respectively. However, the treatmental difference and crop treatment interaction were non-significant. From these findings it can be concluded that Stomp 330E carryovers in the soil and did not affect the plant development and show any phytotoxic effect on the following crops throughout the growing season. Similar results were reported by Warfa and Noor [4]; Karpenko [11]; Aleev [13]; Catizone *et al.* [14]; Subramanian and Ali [17] and Berayon [19].

Conclusion

It was observed that crops planted on Stomp 330E treated plots in cotton behaved very similar to those of untreated plots in grain yield, seedling emergence and plant height. Therefore, it was concluded that Stomp 330E exert no residual effect on the succeeding crops and therefore can be recommended as a safe herbicide.

References

- K.S. Sandhu, Indian J. Agron., 18,23 (1972), Advances in Weed Science (PARC, Islamabad, Pakistan, 1987), pp.122.
- K.S. Sandhu and G.S. Gill, Indian J. Agric. Sci., 44, 504,(1974) Advances in Weed Science (PARC, Islamabad, Pakistan, 1987), pp.122.
- M.S.Gill and L.S. Brar, J. Res. Punjab Agric. Univ. Ludhiana, India, 10, 269 (1974), Avances in Weed Science (PARC, Islamabad, Pakistan, 1987), pp.122.
- 4. A.M. Warfa and M.A.Noor, Studi e Ricerche 2(2), 125 (1978), Field Crop Abst., 33(2), 1697 (1980).
- P.E. Brewer and F.W.Slife, Weed Sci., 27(3), 263 (1979), Field Crop Abst., 33(5), 3548 (1980).
- 6. K.S. Rathi and A.N. Tewari, Indian J. Agric. Res., 13(1),

43 (1979), Field Crop Abst., 33(4), 2650 (1980).

- Y. Regnault and P. Haugazeau, In Proceedings of the 5th International Rape Seed Conference, 1, 307 (1979), Field Crop Abst., 35(1), 700 (1982).
- J.H. Miller and C.N. Carter, Weed Sci., 28(2), 212 (1980); Field Crop Abst., 34(1), 444 (1981).
- P.Tomoroga, N. Sarpe and I.Badin, Bucharest Romania Institutal Agronomic Nicolae Balcercu, 141(1980); Field Crop Abst., 34(12), 10123 (1981).
- I.V. Veselovskii, Kh.S.D.Karaiamo and V.M. Kherebko, Khimiya Sel. Skom Khozyaistve, <u>18(6)</u>, 46 (1980), Field Crop Abst., 34(8), 6183 (1981).
- A.P. Karpenko, A.N. Gruzdo, K.I. Tokhtar and A.M.Lazarev, Khimiya V.Sel. Skom Khozyaistve, 19(3), 39 (1981), Field Crop Abst., 35(12), 9654 (1982).
- 12. B.N. Patil, Y.C. Panchal, V.S.Patil, and K.A. Krishmamurthy, Indian J.Weed Sci., 13(1), 50 (1981).
- B.G. Aleev. Zashchita Rastenii,9, 30 (1982), Field Crop Abst., 36 (6), 5080 (1983).
- P.Catizone, P.Fusi and M. Franci., Rivista di Agronomia, 17(4), 449 (1983), Field Crop Abst., 38(9), 4924 (1985).
- 15. M.S. Abdul-Rouf, A.H. El-Hattab and M.A.Batal, Egyptian J. Agron., 10(1-2), 105(1985).
- S. Delvi and R.S.D.B.Gowda. Pesticides, 19(1), 41(1985); Field Crop Abst., 39(4), 2713 (1986).
- S. Subramanian and A.M.Ali. In Abstracts of papers, Annual Conference of Indian Society of Weed Sci., Field Crop Abst., 39(7), 4980 (1986).
- R.K. Sharma and K.S. Sandhu, J. Res. Punjab Agric. Univ., Ludhiana, India, 22, 213 (1985c), Advances in Weed Science (PARC, Islamabd, Pakistan, 1987), pp.122.
- B.F. Berayon. Southeast Asian J. (Phillippines), 14(2), 7 (1987).
- B.G. Steel and J.H. Torrie, *Principles and Procedures of Statistics* (McGraw Hill Book Comp., Inc., New York, 1980), 2nd ed., pp.106.