Short Communication of the Property of the Communication of the Property of the Communication of the Communication

Pak. j. sci. ind. res., vol.37, nos. 6-7, June-July 1994

Partial Purification and Antibacterial Studies of Extracts from Eugenia jambolana Linn and Vinca rosea Linn

M. Rafi Shaikh, Maleka, F.A. Baqir, S. Naqvi*, Dilnawaz Shaikh*

Department of Microbiology, University of Karachi Karachi-75270, Pakistan

(Received March 14, 1993; revised February 9, 1994)

During the last few years it has repeatedly been reported by many investigators that some plant juices and extracts show antibacterial activity. [1-23].

Present communication deals with the antibacterial activity of ethanolic extracts and partially purified alkaloidal and non-alkaloidal fractions of *Eugenia jambolana* and *Vinca rosea* which are commonly used in medicines.

The extraction of *E. jambolana* and *V. rosea*, air dried flowers, leaves, fruits, stem, roots and seeds were performed by maceration in EtOH for two weeks, after crushing by an Ultraturax apparatus. The crushed material was extracted with

EtOH five times, such that the last extract obtained, was almost colourless. All EtOH extracts were concentrated under reduced pressure to a brownish gummy mass. This gummy extract was acidified with 10% HCl (Merck) and extracted with CHCl₃ (Merck) to remove non-alkaloidal compounds. The acidic aqueous fraction was then basified with NH₃ and extracted thoroughly with CHCl₃.

Antibacterial assay. The crude extract as well as the partially purified fractions were used to determine the antibacterial activity. 5 mg/ml aliquots, dissolved in distilled water, were used in the test. Antibacterial activity was tested against ten different Gram positive and Gram negative bacteria. Freeze dried cultures were procured from ATCC and were maintained on Difco Nutrient agar, stored at 4° and subcultures were made after 4-week intervals.

The tests were run in triplicate. Petri plates (10 cm diam.) were prepared with trypticase soya agar Bhakuni [4], 0.1 ml of the diluted overnight culture was poured and spread on each plate and the plates were stored for 30 min. at 37°. Wells of 6mm diam, were cut with a sterile cork borer in the inoculated agar. The wells were filled with the plant extract. 50% Ethanol

TABLE 1. ANTIBACTERIAL ACTIVITY OF CRUDE ETHANOLIC EXTRACTS.

S. Name	of plant	Part of	21.13.1ar, 11.1s	14 - B 141	Name of microorganism						
No. Botanical name	Vernacular name	the plant used	Bacillus subtilus	Staphylococcus aureus	Streptococcus pyogenes	Streptococcus agalacteae	Corynebacterium diptheriae	Control			
GRAM POSITIVE	Microorganisms	sing allow						eart nile			
1. Eugenia	Jaman	Leaf	12mm	M LI on	8mm	2mm	8mm	2 (9) 1			
jambolana		Stem	8mm	by1.8	8mm	2mm	4mm	d Aurena			
L. T. ST		Root	8mm	6mm	8mm	4mm	6mm	ı la <u>u</u> mo			
		Seed	12mm	10mm	10mm	10mm	8mm	120 d			
2. Vinca	Sadabhar	Leaf	8mm	() = () less	10mm	10mm	sas e it valvinste	nor a nde			
rosea L.		Stem	t de insperie	_	8mm	8mm	8mm	Part Zestet			
		Flower	8mm		12mm	14mm	16mm	- T			
		Root	8mm		10mm	14mm	8mm	1 011			
GRAM NEGATIVE	Microorganism	1 S	901) (1) F. 1	431 -431 	paco lectoral	ing in Sociation		O NOTES. NOTES			
La je soit jad.			Escherichia	Pseudomonas	Salmonella	Shigella	Aerobacter	Control			
			coli	aerogenosa	paratyphi	boydi	hydrophilia				
1. Eugenia	Jaman	Leaf	10mm	4mm	iA i <u>i</u> raksa kaa	establishes be	4mm	(<u>45</u> %)			
jambolana	r. 11 40 A 1 10	Stem	8mm	2mm		4mm	_	s large			
		Root	10mm	8mm	_	6mm	10mm	_			
		Seed	4mm	12mm	8mm	8mm	12mm	= =			
2. Vinca	Sadabhar	Leaf	10mm	.H=81 -u	8mm	16mm	10mm	Abolik .			
rosea L.		Stem	6mm	181 - 181	10mm	A Received Application	10mm	Assis			
		Flower	8mm	5 = 01 (A	8mm	12mm	10mm	A.D . M			
		Root	10mm	6mm	24mm	22mm	8mm	1 "G-12"			

^{*}Department of Pharmaceutics, University of Karachi-75270, Pakistan.

Table 2. Antibacterial Activity of the Alkaloidal and Non-alkaloidal Fractions of Leaf, Stem, Root, Fruit and Flower of Vinca Rosea and Eugenia Jambolana

S.		Alkaloidal								Non-alkaloidal							
	Name of	Vinca rosea			Eugenia jambolana			Vinca rosea				Eugenia jambolana					
No.	microorganism	Leaf	Stem	Flower	Root	Leaf	Stem	Fruit	Seed	Leaf	Stem	Flower	Root	Leaf	Stem	Fruit	Root
-93	GRAM POSITIVE	W 233	MINED I	iv.ha a	The Leave	ar restorted	,	MEE	Hillici	ALUNIS	S VILLE	DL DIALS	11.22 2	telsa.	1 444	THE CASE	
1.	Bacillus subtilus	g drie	2mm	E OI a	6mm	15mm	10mm	15mm	15mm	4mm	HATE.	1.0230	(NOR	M	_	_	_
2.	Staphylococcus aureus	(20)	núw:	10mm	14mm	10mm	8mm	15mm	10mm	-	-	-			-	2 CT 1	_
3.	Streptococcus pyogenes	3701	no-ol-	(Acmaly	10mm	8mm	8mm	10mm	8mm	2mm	HQAD.	18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	d com	- Indian	HO II	-	-
4.	Streptococcus agalacteae		10mm	12mm	6mm	10mm	8mm	12mm	8mm	8mm	SH2	NAH S NA	WALK. N	9	_	_	-
5.	Corynebacterium diptheriae	11 Ta 1	-	8mm	18mm	10mm	10mm	12mm	8mm	2mm	on-in	J. Egole	old_ix	y Wa	r to Day	APELLEY.	-0.6
	GRAM NEGATIVE																
1.	Escherechia coli 97	13_96	6mm	NE TEN	8mm	10mm	10mm	15mm	10mm	6mm	_	_		-	_	_	_
2.	Pseudomonas aerogenosa	4mm	8mm	6mm	16mm	8mm	8mm	8mm	10mm	P WHU	plud b	MINET IE	PL.	N-Date	M Boy	10003	-
3.	Salmonella paratyphi	e li e	8mm	6mm	12mm	15mm	12mm	15mm	15mm	4mm	_	_	-	-	_	_	-
4.	Shigella boydi	in A	6mm	18mm	10mm	10mm	10mm	14mm	12mm	2mm	di Tip	red ne	162(,)	AOJ 13	al <u>o</u> n	AME	MI_
5.	Aerobacter hydrophilia		12mm	3.00000	10mm	10mm	10mm	12mm	10mm	6mm	esa-ui.	mal-jour	io-4 at	المحاوا	80 L	W III LE	HE ST

-ve = No zone of inhibition; Control = 50% Ethanol water.

in water v/v was used as control.

The plates were incubated for 24 hrs. at 37°. At the end or the incubation period, the inhibition zones were measured to the nearest mm. ((Tables 1 - 2).

The data obtained for the antibacterial activity of the crude ethanolic extracts of different parts of *E.jambolana* and *V. rosea* are summarized in Table 1. The results show that all eight plant materials tested exhibited antibacterial activity against most of the Gram Positive and Gram Negative bacteria used in the study. The results are in conformity with the results obtained by Dhar *et al.* [8] and Baqir *et al.* [13]. The most significant activity, with a maximum zone of inhibition of about 24 mm, was observed for the root of *V. rosea* against *Salmonella typhi*.

The crude extract of both plants were fractionated into partially purified alkaloidal and non-alkaloidal fractions by chemical methods. The results are summarized in Table 2.

The different parts of *V. rosea* also showed remarkable antibacterial activity. The present study confirms the results of Farnsworth [3].

The present preliminary study in *E. jambolana* and *V. rosea* establishes the occurrence of antibacterial components. Structure elucidation of the active compounds and further work will be reported in due course.

Key words: Eugenia jambolana, Vinca rosea, Antibacterial activity.

References

- Medicinal Plants Branch, Pakistan Forest Research Institute Abbotabad, (Govt. of Pak. Press Karachi, pub. 1965).
- 2. N.C. Nesgi and M.C. Bhatia, Ind. J. Pharm., 18, 73 (1956).
- 3. N.R. Fransworth, Lloydia, 24, 105 (1961).

- 4. D.S. Bhakuni, M.L. Dhar, M.M. Dhar, B.N. Dhawan, B.L. Gupta and R.C. Srimal, Ind. J. Exp. Biol., 7, 250 (1961).
- 5. L.A. Mitscher, R.P. Leu, M.S. Bathala and J. Beal, Lloydia, 35, 157 (1972).
- S.A. Maryam, A. Shehnaz, S.A.H. Zaidi and A. Zahiri, Pak. j. sci. ind. res., 15 (3), 199 (1972).
- M.L. Dhar, M.M. Dhar, B.N. Dhawan, B.N. Mekrotra, R.C. Srimal and J.S. Tandon, Ind. J. Exp., Biol., 11, 43 (1973).
- 8. M.L. Dhar, B.N. Dhawan, C.R. Persad, R.P. Rastogi, K.K. Singh and T.S. Tandon, Ind. J. Exp. Biol., 12, 512 (1974).
- 9. D. Zaki, Planta Med., 27, 303 (1975).
- 10. E.O. Ogunlana and E. Ramstad, Planta, 27, 354 (1975).
- 11. N. Dhawan, G.M. Pataik, R.P. Rastogi, K.K. Singh and J.S. Tandon, Ind. J. Exp. Biol., B15, 208 (1977).
- 12. B.N. Dhawan, M.P. Dubby, B.N. Mehrotra, R.P. Rastogi and J.S. Tandon, Ind. J. Exp. Biol., 18, 594 (1980).
- S.N. Baqir, S. Dilnawaz and M.S. Rafi, Pak. j. sci. ind. res., B28 (4), 269 (1985).
- 14. S. Dilnawaz, S.N. Baqir and M.S. Rafi, J. Pharm, Univ. Kar., 4 (1), (1985).
- 15. S.N. Baqir, S. Dilnawaz and M.S. Rafi, Pak. j. sci. ind. res., **30**, 4 (1), (1987).
- 16. Anonymous, Description About Medicinal Plant of India, (ICMR, New Delhi, 1987), Vol. II.
- 17. Y. Masac, K. Mikiko, I. Kyoko and T. Shuzs, Planta Med., 55, 169 (1989).
- 18. H. Solomon, I. Alexander and G. Peter, Planta Med., **56**, 187 (1990).
- 19. S. Farooq, A Review of Medicinal Plants of Pakistan, Sci. Khyber, 3 (1) (1991).

- 20. T. Murugravel and M.A. Akbar Shah, Ind. J. Exp. Biol,. **29** (9), (1991).
- 21. H.E. Guan-Fu, Resources of Medicinal Plants in China. MEM. Iust. Oswaldo, curz, rioj, **86** (1991).
- 22. Achrekar, G.S. Saigceta, J.M.S. Kakli, Pote and S.M.K.
- Elkar, In vivo Hypoglycemic Activity of Eugenia jambolana and Ficus bengalensis, Athense, 5 (2) (1991).
- C.B. Alice, V.M.F. Vargas, G.A. Silva, N.C.S. Siqveira, E.E.S. Schapoval, J. Glexe, J.A.P. Henriques and A.T. Henriques, J. Ethnopharmacol., 35 (2) (1991).

CSIR Laboratories Complex, Karachi-75280 Pakistan. (Received December 31, 1991; revised February 22, 1994)

eeds, the effect of epichlorohydrin in the growing wheat hoots at different intervals was found. The study has been arried out on the change of DNA and RNA replicating. This wife is being studied spectrophotometerically at FCSIR aboratories Complex, Karachi.

Living organisms are exposed to virious antingens and carcinogens which are present in the surrounding. The LiviA and RNA, components of the nucleic used are made of medical idea [1-2]. Chargaff et al. [3] developed the methods of synthesis of nucleoside and medical which was first developed the sized nucleoside and medical which was first developed by Todd [4]. The stady of functions of nucleic acid which has been confirmed [5-6] and has direct correlation to present aconfirment Gisawa [7] suggested that the RNA of cotyledons of tean is used during growth of seedling and their results redicted at the emittyo, the nucleic acid changes in the wheat were entry of the nucleic acid changes in the wheat were entry earlier to a the emittyon the nucleic acid changes in the wheat were entry estimated in production of meations [8], it is reported to be responsible for production of meations [9] and their reactions with date for production of meations [9] and their reactions with eacher acid as hir/functional alkyluting areas [15, 11] some

To carry out the determination of effect of epichlorohylrin in growing seeds, the spectrophotomotor Photic-100 Erna Co., Tokyo) petidishes, conon, wheat seeds (Taillojon Agriculture University of Pakisana), when batts optaliorohydrin, PpCI, (liplicing) animo, perchloric acid (19%)

Wheat soods (T. metrivigh) family Postecae (Chamingae) rariesy Blue Silver, were surface sterrhised with 0.1% moreuric chloride softmon and washed thoroughly with distilled water to remove mercuric chloride exampletely.

Small quantity of cotton was spread in four sets of petrilishes and dishes were labelled as T_s, T_s and C_sC=control) in T_s = 0.1%, T_s = 0.01%, T_s = 0.001% solution of epichloobydrin (aqueous) and in C small quantity of distilled water