Pak. j. sci. ind. res., vol. 36, no. 5, May 1993

CONDUCTIVITIES AND IONIC ASSOCIATION OF SODIUM PERCHLORATE AND SODIUM BENZOATE IN MIXED SOLVENT SYSTEMS AT 25°

M. SADIQ KHAN NIAZI

Department of Chemistry, Quaid-e-Azam University, Islamabad, Pakistan

(Received May 11, 1992; revised March 3, 1993)

Electrolytic conductivity measurements have been made on solutions of sodium perchlorate and sodium benzoates in binary mixtures of water with methanol and acetonitrile at 25°. The limiting molar conductivities and association constants were derived from the experimental data with the Fuoss conductivity equation. Sodium benzoate has been found more associated than sodium perchlorate in both solvent systems. The results are discussed in terms of solvent effect on the conductivity parameters as the composition of water + co-solvent mixtures was varied.

Key words: Conductivity, Sodium perchlorate, Sodium benzoate.

Introduction

Sodium perchlorate has been popular supporting electrolyte in the studies of ionic equilibria [1-3] and sodium benzoate has been used for preparation of buffer solutions for the calibration of pH meters both in aqueous as well as in mixed solvent systems [4-6]. Further, sodium benzoate is of special use in beverages and conservation of food stuff.

Present paper is in continuation of the series of electrolytic measurements on these two salts in different binary mixed solvent systems [7-8]. The electrolytic conductivity measurements have been made on sodium perchlorate and sodium benzoate dilute solutions in binary mixtures of water with methanol and acetonitrile at 25° respectively. The conductivity - concentration data were analyzed with Fuoss conductivity equation for the derivation of limiting molar conductivities (Λ_o) and association constant { K_A } values. Finally the results are compared with those available in literature in analogous media and are discussed on the basis of solvent effect on the ionization of these electrolytes as the composition of water + co-solvent mixtures was varied.

Experimental

Chemicals. The salts and acetonitrile were reagent grade of high purity from E. Merck. The salts were dried and kept in a dessicator over P_2O_5 . The methanol and acetonitrile were also from E. Merck with 99.8% purity and were further purified as described elsewhere [9-10].

Conductance measurements. The conductance measurements were carried out using a Microprocessor Conductivity Meter model LF 2000 (Germany). Conductivity cells with cell constants (0.011 \pm 0.001) and (0.665 \pm 0.001) cm⁻¹, respectively were used. Platinized platinum electrodes were used in the cells. The conductivity cell was calibrated following the method of Wu *et al.* [14], using aqueous KCl solutions. Dry nitrogen gas was used for deareation. Other procedure and details have been reported in previous papers [9-13]. The conductivity cell was kept in an oil bath and the temperature of the bath was maintained at $25 \pm 0.01^{\circ}$.

The densities ρ , viscosities η and dielectric constant ε , values were taken from literature [11,13].

Results and Discussion

The molar conductances of sodium perchlorate and sodium benzoate solutions of different concentrations in different methanol + water and acetonitrile + water mixtures are given in Tables 1 - 4, respectively. The experimental data were analyzed with Fuoss (1978-80) conductivity equation [15]. The conductivity equation and details of analysis are reported elsewhere [9-13].

The derived conductivity parameters i.e. the molar conductivities at infinite dilution, Λ_o , the standard deviation $\sigma(\Lambda)$ and association constants K_A values for sodium perchlorate and sodium benzoate in different solvent mixtures are collected in the Tables 5-6, respectively. The ion-pair distance parameter for sodium perchlorate was found to be $11 \pm 2\text{Å}$ and for sodium benzoate as $7\pm 2\text{\AA}$, respectively for both solvent systems.

The limiting molar conductances. The Λ_0 values for both salts in methanol + water mixtures decreased with increase of methanol contents upto 30 mole % composition and then increased. For acetonitrile + water mixtures, the Λ_0 values decreased upto 22.7 mole % for sodium perchlorate and 10 mole % solvent mixture for sodium benzoate and then increased as the co-solvent was added to water. The differential behaviour of two different solvent mixtures is due to differences in the structure of water + methanol and water + acetonitrile solvent systems. Methanol is amphiprotic solvent which enhances the water structure on its addition to the latter [16], while acetonitrile is dipolar aprotic solvent which almost ruptures the water molecular arrangement [17]. The decrease in Λ_o values upto certain composition of water + co-solvent mixture and then increase in these values may be due to differential and preferential solvation of ions with different solvents.

TABLE 1. MOLAR CONDUCTANCES, Λ (S. cm².mol⁻¹) for Sodium Perchlorate Solutions in Methanol + Water Mixtures at 25° The Λ_{o} values for sodium perchlorate and sodium benzoate are also available in some acetonitrile + water mixtures in literatue [18-19]. These authors have used different solvent mixtures than those used in present study, therefore an exact comparison between two set of values for these salts could not

TABLE 2. MOLAR CONDUCTANCES, Λ (S. cm².mol⁻¹) of Sodium Benzoate Solutions in Methanol + Water

---- 050

					TEPOT	F donetd	basivor	S991 11 ye	M Bayla	IV.	IXTURES	AI 23.			
	$\Lambda/S. \text{ cm}^2. \text{ mol}^{-1}$									A/S.	cm ² . mol	-1			
X, =	10	20	30	40	50	60	70	$X_1 =$	10	20	30	40	50	60	70
104 C/m	ol. dm ⁻³							104 C/m	ol. dm ⁻³	niom fill terres ad	e valev 1 Land ba	o estillat viradi ere	m y tatu ai aincia	d Ell com	
4.762	93.16	78.17	68.60	65.25	63.40	65.50	72.44	1.191	76.25	69.18	62.86	56.41	54.41	58.50	62.78
9.091	92.63	77.62	68.04	64.68	62.88	64.73	71.32	2.273	75.91	68.85	62.52	56.06	54.01	58.04	62.11
13.044	92.27	77.22	67.63	64.26	62.50	64.17	70.50	3.261	75.66	68.61	62.27	55.80	53.72	57.71	61.63
16.666	91.99	76.90	67.31	63.92	62.21	63.72	69.85	4.167	75.44	68.38	62.03	55.56	53.45	57.39	61.18
20.000	91.77	76.63	67.04	63.64	61.97	63.34	69.31	5.000	75.25	68.20	61.84	55.36	53.23	57.14	60.82
23.077	91.59	76.40	66.80	63.40	61.76	63.02	68.84	5.769	75.10	68.05	61.68	55.19	53.04	56.92	60.53
25.926	91.43	76.20	66.60	63.19	61.56	62.74	68.44	6.481	74.97	67.91	61.53	55.04	52.87	56.73	60.27
28.571	91.29	76.03	66.42	63.00	61.41	62.48	68.07	7.142	74.85	67.78	61.40	54.91	52.72	56.56	60.03
31.034	91.17	75.88	66.26	62.84	61.27	62.26	67.75	7.758	74.74	67.67	61.28	54.78	52.58	56.43	59.81
33.340	91.07	75.74	66.11	62.69	61.15	62.06	67.47	8.333	74.64	67.57	61.17	54.67	52.46	56.26	59.61
35.483	90.97	75.61	65.98	62.56	61.04	61.88	67.21	8.871	74.53	67.46	61.06	54.55	52.33	56.10	59.40
37.500	90.88	75.50	65.86	62.43	60.94	61.71	66.97	9.375	74.46	67.39	60.98	54.48	52.18	56.01	59.23
39.4000	90.81	75.39	65.75	62.32	60.85	61.56	66.76	9.848	74.31	67.24	60.82	54.31	52.06	55.79	59.08
41.176	90.74	75.29	65.65	62.22	60.76	61.422	66.56	10.294	74.25	67.17	60.75	54.24	51.98	55.70	58.95
42.857	90.67	75.20	65.56	62.12	60.67	61.29	66.37	10.714	74.19	67.11	60.68	54.17	51.90	55.61	58.73

x, = Mass % Methanol.

 $x_1 = Mass \%$ Methanol.

TABLE 3. MOLAR CONDUCTANCES, Λ (S. cm².mol⁻¹) for Sodium Perchlorate Solutions in Acetonitrile+Mixture

WATERS	AT	23	

noimivab	the standard	dilution, A.	itics at infinite	$\Lambda/S. cm^2$. mol ⁻¹	instant $\{K_{s}\}$ va	d association or	ivities (A) and
X, =	nuibc <mark>o</mark> noliza	10	20	30	40	50	60	70
104 C/mo	ol. dm ⁻³	te in differen	sociata benros	baa star	basis of solvent	out no passion	lia and are dis	nalogoùs moi
5.00	117.16	106.24	105.82	108.32	110.14	112.64	116.97	124.42
9.629	116.53	105.59	105.32	108.75	109.53	111.95	116.05	122.81
13.928	116.05	105.12	104.99	107.38	109.12	111.50	115.42	121.62
17.931	115.69	104.76	104.76	107.10	108.81	111.14	114.92	120.68
21.666	115.38	104.45	104.57	106.97	108.56	110.85	114.54	120.00
25.161	115.14	104.19	104.41	106.68	108.35	110.62	114.22	119.35
28.437	114.92	103.96	104.28	106.52	108.18	110.43	113.98	118.83
31.515	114.72	103.76	104.17	106.38	108.03	110.27	113.78	118.70
34.411	114.55	103.58	104.07	106.26	107.92	110.14	113.63	118.65
37.142	114.38	103.42	103.99	106.15	107.80	110.03	113.52	118.62
39.723	114.25	103.27	103.90	106.05	107.71	109.93	113.44	118.55
42.162	114.13	103.13	103.84	105.96	107.64	109.86	113.39	118.50
44.474	114.02	103.00	103.77	105.89	107.57	109.80	113.35	118.45
46.666	113.90	102.89	103.71	105.81	107.52	109.75	113.32	118.40
48.750	113.79	102.79	103.66	105.71	107.48	109.72	113.27	118.35

x, = Mass % Acetonitrile.

of of We et al. [14], using squeeus KCI solution

be made. However, the findings in terms of general behaviour of these two salts in acetonitrile + water mixture is found the same. Comparison is shown graphically in Fig. 1. The values found by Mariah et al. [19] are about 1% higher than those presently found for sodium benzoate. This difference may be due to selection of different conductivity equations and different R (Gurney co-sphere) distance parameter [15].

chlorate are less than 10 in all methanol + water mixtures, respectively. While those for sodium benzoate these values are appreciably higher than sodium perchlorate in all solvent mixtures. The values of association constants indicate that the Na⁺ and C₆H₅COO⁻ ions are partially solvent separated and Na⁺ and C1O⁻₄ ions are completely solvent separated. It may be concluded that K_A values increase with incerase of either methanol or acetonitrile contents in these solvent mixtures.

Association constants. The KA values for sodium per-

TABLE 4. MOLAR CONDUCTANCES, A (S. cm².mol⁻¹) of Sodium Benzoate Solutions in Acetonitrile+Water Mixtures at 25°.

		(2250q ni), (EP	i, 38, No. 2 (19	Λ/S. cm ² . r	nol ⁻¹			
$X_1 =$	0	10	20	30	40	50	60	70
10° C/mol	. am ^s	- 14 fatter weeke	and the second			1		
5.00	81.00	76.39	77.78	77.98	78.50	81.16	82.88	91.00
9.629	80.41	75.70	77.00	77.23	77.63	79.93	81.40	88.42
13.928	79.98	75.18	76.50	76.73	77.13	78.96	80.30	86.41
17.931	79.63	74.76	76.15	76.30	76.68	78.16	79.37	84.78
21.666	79.34	74.37	75.85	76.06	76.28	77.47	78.58	83.44
25.161	79.13	74.09	75.55	75.65	75.95	76.90	77.92	82.29
28.437	78.88	73.81	75.30	75.37	75.64	76.37	77.33	81.32
31.515	78.70	73.55	75.08	75.14	75.36	75.90	76.72	80.49
34.411	78.54	73.35	74.82	74.94	75.13	75.48	76.36	79.78
37.142	78.38	73.14	74.62	74.71	74.91	75.12	75.96	79.16
39.723	78.23	72.95	74.10	74.34	74.71	74.75	75.61	78.64
42.162	78.12	72.77	74.20	74.38	74.54	74.44	75.30	78.18
44.474	78.00	72.60	74.00	74.24	74.36	74.14	75.00	77.78
46.666	77.86	72.45	73.80	74.09	74.21	73.88	74.76	77.44
48.750	77.75	72.32	73.65	73.96	74.07	73.65	74.55	77.14

x, = Mass % Acetonitrile.

TABLE 5	. CONDUCTANCE PARAMETERS FOR SODIUM SALTS IN
(19. Z. A	Methanol + Water Mixtures at 25°.

TABLE 6. CONDUCTANCE PARAMETERS FOR SODIUM SALTS IN ACETONITRILE - WATER MIXTURES AT 25°. Mole % $\Lambda /(S.cm^2, mol^{-1}) K /(dm^3, mol^{-1}) 100\sigma\Lambda /\Lambda$ $\Lambda /(S \text{ cm}^2 \text{ mol}^{-1}) \text{ K } /(\text{dm}^3 \text{ mol}^{-1}) = 100 \text{ GA } / \Lambda$ Mala 0%

SODIUM PE	ERCHLORATE		
5.89	94.63 ± 0.01	0.73 ± 0.01	0.01
12.3	79.58 ± 0.01	2.55 ± 0.13	0.02
19.4	69.89 ± 0.03	4.54 ± 0.21	0.03
27.3	66.68 ± 0.02	5.33 ± 0.22	0.04
36.0	64.85 ± 0.02	6.55 ± 0.42	0.05
45.7	67.34 ± 0.01	7.30 ± 0.88	0.05
56.7	74.94 ± 0.01	8.88 ± 1.11	0.08
SODIUM BI	ENZOATE		
5.8	77.08 ± 0.03	10.85 ± 0.5	0.01
12.3	69.95 ± 0.03	14.87 ± 0.8	0.02
19.4	63.62 ± 0.04	18.88 ± 0.7	0.04
27.3	57.20 ± 0.03	21.03 ± 1.2	0.03
36.0	55.27 ± 0.03	29.18 ± 1.0	0.02
45.70	59.55 ± 0.04	34.76 ± 1.1	0.04
56.7	64.08 ± 0.06	50.26 ± 1.8	0.08

11010 70) It _A /(unit : mor)	100011/11
SODIUM PE	RCHLORATE		
0	118.74 ± 0.05	0.69 ±0.11	0.07
4.7	110.43 ± 0.02	0.87 ±0.06	0.03
9.90	107.43 ± 0.02	1.05 ± 0.03	0.02
15.90	104.90 ± 0.02	2.54 ±0.06	0.03
22.70	102.19 ± 0.03	4.08 ±0.18	0.04
30.50	110.25 ± 0.05	4.00 ±0.12	0.05
39.90	119.69 ± 0.01	6.70 ±0.18	0.05
50.60	128.60 ± 0.03	7.27 ±0.11	0.11
SODIUM BE	ENZOATE		
0	82.61 ± 0.07	5.05 ±0.03	0.01
4.7	78.09 ± 0.01	8.51 ±0.02	0.03
9.90	79.44 ± 0.04	9.75 ±0.22	0.03
15.90	79.78 ± 0.02	9.99 ± 0.40	0.02
22.70	80.52 ± 0.03	13.78 ± 0.59	0.04
30.50	83.90 ± 0.01	23.91 ± 0.58	0.03
39.90	86.12 ± 0.02	29.72 ± 1.50	0.06
50.6	95.98 ± 0.03	63.10 ± 2.10	0.11

M. S. K. NIAZI

This may be due to decrease in the values of dielectric constant values of both methanol + water and acetonitrile + water mixtures. As no studies by some other research workers were found in literature for methanol + water mixtures, therefore a comparison could not be made. As seen in the Tables 5 and 6, the solvent composition is effecting differently on each electrolyte in each solvent system.

Acknowledgement. Financial support from University Research Fund (URF) is acknowledged gratefully.

References

- 1. G.F. Hefter, J. Solution Chem., 11, 45 (1982), 13, 179 (1984).
- 2. R.E. Mesmer and C.F. Baes, The Hydrolysis of Cations,

(Academic Press, New York, 1976).

- 3. IUPAC Chemical Data Series, No. 22 (Pergamon, Oxford, 1979).
- N.P. Grineva and V.V. Aleksandrov, Zh. Fiz. Khim., 47, 467 (1973).
- V.V. Aleksandrov and A.A. Bucharovic, Zh. Fiz. Khim., 44, 2047 (1970).
- L.A. Smirnova, M.L. Kurskaja and I.E. Tiscenko, Zh. Fiz. Khim., 48, 1533 (1974).
- M.S.K. Niazi, S.S. Shah and I. Jabeen, J. Chem. Eng. Data, 38, No. 2 (1993), (in press).
- M.S.K. Niazi and S. Taj, J. Chem. Eng. Data, 38 No. 3, (1993), (in press).
- 9. M.K. Niaz, O. Fischer and E. Fischerova, J. Solution Chem., 15, 957 (1986).
- M.S.K. Niazi and J. Ali, Bull. Chem. Soc. Jpn., 63, 3619 (1990).
- 11. M.S.K. Niazi, S.S. Shah, J. Ali and M.Z.I. Khan, J. Solution Chem., 19, 623 (1990).
- 12. M.S.K. Niazi and J. Ali, J. Chem. Eng. Data, 37, 235 (1992).
- M.S.K. Niazi and M.Z.I. Khan, J. Solution Chem., 22, No. 4 (1993), (in press).
- Y.C. Wu, W.F. Koch, W.J. Hammer and R.L. Kay, J. Solution Chem., 16, 985 (1987).
- 15. R.M. Fuoss, J. Phys. Chem., **82**, 2427 (1978), J. Solution Chem., **9**, 379 (1980).
- 16. F. Franks and D.G. Ives, Quart. Rev., 20, 1 (1966).
- C. Morau and G. Douheret, (a) Thermochimica Acta, 13, 385 (1975); (b) J. Chem. Thermodyn. 8, 403 (1976).
- 18. K. Morinaga and K. Miyaji, Denki Kagu, 50, 736 (1982).
- 19. V. Manaiah, B. Sethuram and R.T. Navaneeth, Z. Phys. Chem., 267, 1001 (1986).

	118.74 ± 0.05			
		22.70		

186