POTENTIAL ENERGY CALCULATIONS OF METHYL α - THIOMALTOSIDE " $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{10} \mathrm{~S}$ "

Azra Khatoon, Naheed Akhtar, I.M. Kidwai and M.A. Haleem
Department of Biochemistry, University of Karachi, Karachi-75270, Pakistan.

(Received September 17, 1990; revised September 9, 1993)

Abstract

During the course of present work potential energy calculations are carried out to find the bonded and non bonded interactions in the structure of methyl α - thiomaltoside. The possible allowed conformations of $\mathrm{O}_{6}-\mathrm{O}_{6}^{\prime}$ are found to be in the region of $\phi=0^{\circ}$ to 360° and $\phi^{\prime}=0^{\circ}$ to $230^{\circ}, \phi=40^{\circ}$ to 310° and $\phi=230^{\circ}$ to 360° respectively (ϕ and ϕ^{\prime} are the angles of rotation about the bond $\mathrm{C}_{5}-\mathrm{C}_{6}$ and $\mathrm{C}^{\prime}{ }_{5}-\mathrm{C}^{\prime}$, respectively). The hydrogen bonds for the pair $\mathrm{O}_{6}-\mathrm{O}_{6}^{\prime}$ are located at the following values of ϕ and ϕ^{\prime}; (I). $\phi=40^{\circ}, \phi=260^{\circ}$; (II). $\phi=310^{\circ}, \phi^{\prime}=300^{\circ}$; (III). $\phi^{\prime}=310^{\circ}, \phi^{\prime}=310^{\circ}$; (IV). $\phi=340^{\circ}$ and $\phi^{\prime}=340^{\circ}$. The distance between the two atoms is $2.70 \mathrm{~A}^{\circ}$ for the above values.

Key words: Methyl α - thiomaltoside.

Introduction

Methyl α-thiomaltoside $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{10} \mathrm{~S}$ belongs to thiodisaccharide system. In the field of polysidaseoligosaccharide complexes, 1 -thioglyosides have appeared to be good substrate analogues [1-5].

SergePerez and Caroll Vergelati [6] have studied the crystal structure of methyl α - thiomaltoside by X-ray diffraction. Crystal data are as follows; $a=14.196 \mathrm{~A}, \mathrm{~b}=4.846 \mathrm{~A}$, $c=12.410 \mathrm{~A}, \beta=110.12^{\circ}$ and space group P_{1}. These workers [7-9] proposed that the hydrogen bonded chains were present between O_{2} and O_{3}^{\prime} as found in maltose, methyl β-maltoside and α maltose monohydrate.

The aim of present work is to describe the different possible position of hydrogen bonding and detailed conformational analysis of methyl α-thiomaltoside similar to other drugs [10-14].

Experimental

The perspective view of methyl α - thiomaltoside is shown in Fig. 1. The position of O_{6} atom in 1 st ring is gauche to $\mathrm{C}_{5}-\mathrm{O}_{5}$ and trans to $\mathrm{C}_{4}-\mathrm{C}_{5}$ (Fig. 1). In terms of angular variable describing the position with respect to $\mathrm{C}_{5}-\mathrm{C}_{6}$ bond we define ϕ (angle of rotation) to be zero in gt position and to increase positively as the plane $\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{O}_{6}$ rotates clockwise (Fig. 2). O_{6}^{\prime} atom of the 2nd ring is in gg conformation (Fig. 1). In this $\mathrm{C}_{6}^{\prime}-\mathrm{O}_{6}^{\prime}$ is gauche to both $\mathrm{C}_{5}^{\prime}-\mathrm{O}_{5}^{\prime}$ and $\mathrm{C}_{4}^{\prime}-\mathrm{C}_{5}^{\prime}$ (unprimed and primed atoms represent atom of 1 st and 2 nd ring, respectively), ϕ^{\prime} (angle of rotation) is zero in gg position and increases positively as the plane of $\mathrm{C}_{5}^{\prime} \mathrm{C}_{6}^{\prime}-\mathrm{O}_{6}^{\prime}$ rotates clockwise (Fig. 2). The coordinates of the atoms O_{6} and O_{6}^{\prime} are evaluated after rotation about the bonds $\mathrm{C}_{5}-\mathrm{C}_{6}(\phi)$ and $\mathrm{C}_{5}{ }_{5}-\mathrm{C}^{\prime}{ }_{6}$ (ϕ '), respectively.

The inter molecular distance and potential energy for a pair of atoms i and j separated by a distance rij calculated for
the following pairs of 2 methyl α - thiomaltoside residues $\mathrm{O}_{6}-\mathrm{O}_{5}, \mathrm{O}_{6},-\mathrm{O}_{4}, \mathrm{O}_{6}-\mathrm{C}_{4}, \mathrm{O}_{6}^{\prime}-\mathrm{O}_{6}, \mathrm{O}_{6}^{\prime}-\mathrm{O}_{5}^{\prime}, \mathrm{O}_{6}^{\prime}-\mathrm{C}_{4}^{\prime}$.

The detailed mathematical calculations are given elsewhere [12]. Several programmes were written in basic language and Sord M(68) was used throughout this work.

Result and Discussions

The contact distance contours for the pairs $\mathrm{O}_{6}-\mathrm{O}_{6}^{\prime}$ are shown in Fig. 3. The contour maps for the pairs $\mathrm{O}_{6}-\mathrm{O}_{5}$, $\mathrm{O}_{6}-\mathrm{O}_{4}, \mathrm{O}_{6}-\mathrm{C}_{4}, \mathrm{O}_{6}-\mathrm{O}_{6}^{\prime}, \mathrm{O}_{6}^{\prime}-\mathrm{O}_{5}^{\prime}$ and $\mathrm{O}_{6}^{\prime}-\mathrm{C}_{4}^{\prime}$ are given in Figs. 4, 5 and 6 respectively.

Figure 7 shows the plot of rij versus ϕ and ϕ^{\prime} for the pairs mentioned above. Table 1 shows the values of ϕ and ϕ^{\prime} for intramolecular hydrogen bond formation between the atoms O_{6} and O_{6}^{\prime}.

In the present work detailed calculations are carried out to study the conformation of side chains in the structure of methyl α - thiomaltoside. Perez and Vergelati [6] reported the occurrence of two intramolecular hydrogen bonds between $\mathrm{O}_{5}-\mathrm{O}_{6}^{\prime}$ and $\mathrm{O}_{6}-\mathrm{O}_{6}^{\prime}$.

In this paper a search is made to find the possible positions of hydrogen bonds for the pair $\mathrm{O}_{6}-\mathrm{O}_{6}^{\prime}$. The criteria used for

Fig. 1. The 100 projection of methyl - α - Thiomaltoside.

Fig. 2. The 100 projection of coordinates showing clockwise rotation of O_{6} and O_{6}^{\prime}.
Table 1. Various Regions for the Intramolecular Hydrogen Bond Formation Between the Atoms $\mathrm{O}_{6}-\mathrm{O}_{6}^{\prime}$

ϕ	ϕ^{\prime}	rij
0^{0}	230°	2.793
10^{0}	230°	2.741
10^{0}	330°	2.809
20°	330°	2.736
30°	230°	2.776
30°	300°	2.770
40°	240°	2.77
	250°	2.72
	260°	2.70
	270°	2.71
	280°	2.76
310°	290°	2.75
	300°	2.70
	310°	2.70
320°	320°	2.73
	330°	2.80
330°	270°	2.77
	340°	2.79
340°	260°	2.75
	340°	2.72
350°	250°	2.74
	340°	2.70
360°	240°	2.75
	340°	2.73
230°	2.79	

deciding the hydrogen bonds is that the $\mathrm{O}-\mathrm{O}$ distance should lie between $2.7 \AA$ and $2.8 \AA$. The following pairs were selected to study the conformation.
$\mathrm{O}_{6}-\mathrm{O}_{6}{ }_{6}$ pair. Contact distance contour for the $\mathrm{pairO}_{6}-\mathrm{O}^{\prime}{ }_{6}$ (Fig. 3) shows that the intramolecular hydrogen bond formation is possible for the following values of ϕ and ϕ^{\prime} when the rij is $2.70 \AA$ (Table 1) (i) $\phi=40^{\circ}, \phi^{\prime}=260$ (ii) $\phi=310^{\circ}, \phi^{\prime}=300^{\circ}$, (iii) $\phi=310^{\circ}, \phi^{\prime}=310^{\circ}$, (iv) $\phi=340^{\circ}, \phi^{\prime}=340^{\circ}$. Energy calculation for the pair $\mathrm{O}_{6}-\mathrm{O}_{6}^{\prime}$ indicates that the minimum potential energies are found to be $0.379 \mathrm{Kcal} /$ mole when $\phi=350^{\circ}$ and $\phi^{\prime}=290^{\circ}$ (Fig. 4). The allowed conformations are shown outside the zero contour in the regions of $\phi=0$ to 360° and $\phi^{\prime}=$ 0° to $230^{\circ}, \phi=40^{\circ}$ to 310° and $\phi^{\prime}=230^{\circ}$ to 360°.
$O_{6}^{\prime}-C^{\prime}{ }_{4}$ pair - The maximum potential energy was found to be $0.154 \mathrm{~K} \mathrm{cal} / \mathrm{mole}$ at $\phi=310^{\circ}$. The rotation of O_{6}^{\prime} from 0° to 280° and 340° to 360° gives allowed conformation, keeping C_{4} fixed (Fig. 5).

$$
\text { Buir:(0 } \left.\cdot \cdots 0_{6}^{\prime}\right)
$$

Fig. 3. The contact distance contours for the pair $\mathrm{O}_{6}-\mathrm{O}_{6}^{\prime}$. (Page 518)

Fig. 4. Energy contours for the pair $\mathrm{O}_{6}-\mathrm{O}_{6}^{-}$. The units of energy are K $\mathrm{cal} / \mathrm{mole}$.

Fig. 5. The plot of potential energy versus, ϕ^{\prime} for the pairs:- $\mathrm{O}_{6}^{\prime}-\mathrm{O}^{\prime}$, and $\mathrm{O}_{6}^{\prime}-\mathrm{C}_{4}^{\prime}$ (ϕ^{\prime} represents rolation of $\mathrm{O}_{6}{ }^{\prime}, \mathrm{O}_{5}$ and C_{4} are kept fixed). The units of energy are K cal/mole.

Fig. 6. The plot of potential energy Versus ϕ for the pairs: $\mathrm{O}_{6}-\mathrm{O}_{4}, \mathrm{O}_{6}$ $-\mathrm{O}_{4}, \mathrm{O}_{6}-\mathrm{O}_{5}$. (ϕ represents rotation of only $\mathrm{O}_{6}, \mathrm{O}_{4}, \mathrm{C}_{4}$ and O_{5} are kept fixed). The units of energy are $\mathrm{K} \mathrm{cal/mole}$.
$\mathrm{O}_{6}^{\prime}-\mathrm{O}_{5}^{\prime}$ pair. The maximum potential energy was found to be $0.230 \mathrm{Kcal} / \mathrm{mole}$ at $\phi=70^{\circ}, \mathrm{O}_{5}$ was fixed. The rotation of O_{6} from 20° to 110° is not allowed. The allowed conformations are when $\phi^{\prime}=0^{\circ}$ to 20° and 110° to 360° (Fig. 5).
$O_{6}-C_{4}$ pair. The maximum potential energy was found to be $0.228 \mathrm{~K} \mathrm{cal} /$ mole at $\phi=180^{\circ}, \mathrm{C}_{4}$ is fixed. The rotation of O_{6} from 140° to 210° indicates unallowed region (Fig. 6).
$\mathrm{O}_{6}-\mathrm{O}_{4}$ pair. The maximum potential energy for the pair $\mathrm{O}_{6}-\mathrm{O}_{4}$ was found to be $0.192 \mathrm{Kcal} / \mathrm{mole}$ at $\phi=150^{\circ}, \mathrm{O}_{4}$ is fixed. The allowed conformations are observed at $\phi=0^{\circ}$ to 120° and 180° to 360° (Fig. 6).
$O_{6}-O_{5}$ pair. The maximum potential energy was found to be $0.2503 \mathrm{~K} \mathrm{cal} / \mathrm{mole}$ at $\phi=300^{\circ}$. The allowed region for this pair is at $\phi=$ from 0° to 250° (Fig. 6). Figure 7 shows the serious type of short contact for the pairs $\mathrm{O}_{6}-\mathrm{O}_{5}$ and $\mathrm{O}_{6}^{\prime}-\mathrm{O}_{5}^{\prime}$. This is also confirmed from potential energy calculation (Figs. 5 and 6). Present calculations suggest that an intra sheet $\mathrm{O}_{6} . . \mathrm{H}_{. .} \mathrm{O}_{6}$

Fig. 7. The plot of rij versus ϕ and $\phi^{\prime}\left(\phi\right.$ and ϕ^{\prime} represents rotation of O_{6} and O_{6}^{\prime} respectively) keeping the 2 nd atom fixed.
hydrogen bond can be formed. Such type of H-bond is necessary to stabilize the structure.

References

1. J. Mond, Enzymes Units of Biological Structures and Function, (New York, Academic Press, 1956).
2. W. Boos, P. Schaedel and K. Wallen felds, Eur. J. BioChem., 1, 382 (1967).
3. M.E. Rafestin, A. Obrenovi tch, A. Oblin and M. Monsigny, FEBS lett., 40, 62 (1974).
4. E. Jr. Steers, P. Ouatrecaseas and H.B. Polland, J. Biol. Chem., 246, 196 (1971).
5. M. Claeyssens, H. Kersters - Hilderson, J.P. Vanwauve and C.K. De Brugue, F E B Slett., II, 336 (1970).
6. Serge Perez and Caroll Vergelati, Acta Cryst., B40, 294 (1984).
7. F. Takusagawa and R.A. Jacobson, Acta Cryst., B34, 213 (1978).
8. S.S.C. Chu and G.A. Jeffrey, Acta Cryst., 23, 1038 (1967).
9. M.E. Gress and G.A. Jeffrey, Acta Cryst., B33, 2490 (1977).
10. Z.S. Saify and M.A. Haleem, Pak. j. sci. ind. res., 31, 245 (1988).
11. M.A. Haleem, Meena Ramzan Ali and Z.S. Saify, Pak. j. sci. ind. res., 31, 330 (1988).
12. M.A. Halceem and Z.S. Saify, Pak. j. sci. ind. res., 29, 19 (1986).
13. M.A. Haleem and Z.S. Saify, Pak. j. sci. ind. res., 32, 74 (1989).
14. M.A. Haleem, Meena Ramzan Ali and Z.S. Saify, Pak. j. sci. ind. res., 32, 76 (1989).
