Pak. sci. ind. res., vol. 36, no. 12, December 1993

POTENTIAL ENERGY CALCULATIONS OF METHYL α - THIOMALTOSIDE "C₁₃H₂₄O₁₀S"

AZRA KHATOON, NAHEED AKHTAR, I.M. KIDWAI AND M.A. HALEEM

Department of Biochemistry, University of Karachi, Karachi-75270, Pakistan.

(Received September 17, 1990; revised September 9, 1993)

During the course of present work potential energy calculations are carried out to find the bonded and non bonded interactions in the structure of methyl α - thiomaltoside. The possible allowed conformations of O₆ - O₆ are found to be in the region of $\phi = 0^{\circ}$ to 360° and $\phi' = 0^{\circ}$ to 230°, $\phi = 40^{\circ}$ to 310° and $\phi = 230^{\circ}$ to 360° respectively (ϕ and ϕ' are the angles of rotation about the bond C₅ - C₆ and C'₅ - C'₆, respectively). The hydrogen bonds for the pair O₆ - O'₆ are located at the following values of ϕ and ϕ' ; (I). $\phi = 40^{\circ}$, $\phi = 260^{\circ}$; (II). $\phi = 310^{\circ}$, $\phi' = 310^{\circ}$, $\phi' = 310^{\circ}$; (IV). $\phi = 340^{\circ}$ and $\phi' = 340^{\circ}$. The distance between the two atoms is 2.70 A° for the above values.

Key words: Methyl a - thiomaltoside.

Introduction

Methyl α -thiomaltoside $C_{13}H_{24}O_{10}$ S belongs to thiodisaccharide system. In the field of polysidaseoligosaccharide complexes, 1-thioglyosides have appeared to be good substrate analogues [1-5].

SergePerez and Caroll Vergelati [6] have studied the crystal structure of methyl α - thiomaltoside by X-ray diffraction. Crystal data are as follows; a=14.196 A, b=4.846 A, c=12.410 A, β =110.12° and space group P2₁. These workers [7-9] proposed that the hydrogen bonded chains were present between O₂ and O'₃ as found in maltose, methyl β -maltoside and α maltose monohydrate.

The aim of present work is to describe the different possible position of hydrogen bonding and detailed conformational analysis of methyl α -thiomaltoside similar to other drugs [10-14].

Experimental

The perspective view of methyl α - thiomaltoside is shown in Fig. 1. The position of O₆ atom in 1st ring is gauche to C₅ - O₅ and trans to C₄ - C₅ (Fig. 1). In terms of angular variable describing the position with respect to C₅ - C₆ bond we define ϕ (angle of rotation) to be zero in gt position and to increase positively as the plane C₅ - C₆ - O₆ rotates clockwise (Fig. 2). O'₆ atom of the 2nd ring is in gg conformation (Fig. 1). In this C'₆ - O'₆ is gauche to both C'₅ - O'₅ and C'₄ - C'₅ (unprimed and primed atoms represent atom of 1st and 2nd ring, respectively), ϕ' (angle of rotation) is zero in gg position and increases positively as the plane of C'₅ C'₆ - O'₆ rotates clockwise (Fig. 2). The coordinates of the atoms O₆ and O'₆ are evaluated after rotation about the bonds C₅ - C₆(ϕ) and C'₅ - C'₆ (ϕ'), respectively.

The inter molecular distance and potential energy for a pair of atoms i and j separated by a distance rij calculated for the following pairs of 2 methyl α - thiomaltoside residues $O_6 - O_5 O_6 - O_4 O_6 - C_4 O_6 - O_6 O_6 - O_5 O_6 - C_4 O_6 - C_4 O_6 - O_6 O_6 - O_5 O_6 - C_4 O_6 - C_4 O_6 - O_6 O_6$

The detailed mathematical calculations are given elsewhere [12]. Several programmes were written in basic language and Sord M(68) was used throughout this work.

Result and Discussions

The contact distance contours for the pairs $O_6 - O_6'$ are shown in Fig. 3. The contour maps for the pairs $O_6 - O_5'$, $O_6 - O_4, O_6 - C_4, O_6 - O_6', O_6' - O_5'$ and $O_6' - C_4'$ are given in Figs. 4, 5 and 6 respectively.

Figure 7 shows the plot of rij versus ϕ and ϕ' for the pairs mentioned above. Table 1 shows the values of ϕ and ϕ' for intramolecular hydrogen bond formation between the atoms O_6 and O'_6 .

In the present work detailed calculations are carried out to study the conformation of side chains in the structure of methyl α - thiomaltoside. Perez and Vergelati [6] reported the occurrence of two intramolecular hydrogen bonds between O₅ - O'₆ and O₆ - O'₆.

In this paper a search is made to find the possible positions of hydrogen bonds for the pair $O_6 - O_6^2$. The criteria used for

Fig. 2. The 100 projection of coordinates showing clockwise rotation of O_6 and O'_6 .

Table 1.	VARIOUS REGIONS FOR THE INTRAMOLECULAR HYDRO-	
GEN	BOND FORMATION BETWEEN THE ATOMS O, - O',	

		6 6
φ	φ'	rij
00	2300	2.793
10 ⁰	230°	2.741
100	330°	2.809
20°	330°	2.736
30°	230°	2.776
30°	300°	2.770
40°	240°	2.77
	250°	2.72
	260°	2.70
	270°	2.71
	280°	2.76
310°	290°	2.75
	300°	2.70
	310°	2.70
	320°	2.73
	330°	2.80
320°	270°	2.77
	340°	2.79
330°	260°	2.75
	340°	2.72
340°	250°	2.74
	340°	2.70
350°	240°	2.75
	340°	2.73
 360°	230°	2.79

deciding the hydrogen bonds is that the O - O distance should lie between 2.7Å and 2.8Å. The following pairs were selected to study the conformation. $O_6 - O'_6 pair$. Contact distance contour for the pair $O_6 - O'_6$ (Fig. 3) shows that the intramolecular hydrogen bond formation is possible for the following values of ϕ and ϕ' when the rij is 2.70 Å (Table 1) (i) $\phi = 40^\circ$, $\phi' = 260$ (ii) $\phi = 310^\circ$, $\phi' = 300^\circ$, (iii) $\phi = 310^\circ$, $\phi' = 310^\circ$, (iv) $\phi = 340^\circ$, $\phi' = 340^\circ$. Energy calculation for the pair $O_6 - O'_6$ indicates that the minimum potential energies are found to be 0.379 Kcal/mole when $\phi = 350^\circ$ and $\phi' = 290^\circ$ (Fig. 4). The allowed conformations are shown outside the zero contour in the regions of $\phi = 0$ to 360° and $\phi' =$ 0 ° to 230°, $\phi = 40^\circ$ to 310° and $\phi' = 230^\circ$ to 360°.

 $O'_6 - C'_4 pair$ - The maximum potential energy was found to be 0.154 K cal/mole at $\phi = 310^\circ$. The rotation of O'_6 from 0° to 280° and 340° to 360° gives allowed conformation, keeping C_4 fixed (Fig. 5).

Fig. 3. The contact distance contours for the pair $O_6 - O'_6$. (Page 518)

Pair: (06.06)

Fig. 4. Energy contours for the pair $O_6 - O'_6$. The units of energy are K cal/mole.

Fig. 5. The plot of potential energy versus, ϕ' for the pairs:- O'₆ - O'₅ and O'₆ - C'₄ (ϕ' represents rolation of O'₆, O₅ and C₄ are kept fixed). The units of energy are K cal/mole.

Fig. 6. The plot of potential energy Versus ϕ for the pairs: $O_6 - O_4$, $O_6 - O_4$, $O_6 - O_5$, $(\phi$ represents rotation of only O_6 , O_4 , C_4 and O_5 are kept fixed). The units of energy are K cal/mole.

 $O'_6 - O'_5 pair$. The maximum potential energy was found to be 0.230 K cal/mole at $\phi = 70^\circ$, O_5 was fixed. The rotation of O_6 from 20° to 110° is not allowed. The allowed conformations are when $\phi'=0^\circ$ to 20° and 110° to 360° (Fig. 5).

 $O_6 - C_4$ pair. The maximum potential energy was found to be 0.228 K cal/mole at $\phi = 180^\circ$, C_4 is fixed. The rotation of O_6 from 140° to 210° indicates unallowed region (Fig. 6).

 $O_6 - O_4$ pair. The maximum potential energy for the pair $O_6 - O_4$ was found to be 0.192 Kcal/mole at $\phi = 150^\circ$, O_4 is fixed. The allowed conformations are observed at $\phi = 0^\circ$ to 120° and 180° to 360° (Fig. 6).

 $O_6 - O_5$ pair. The maximum potential energy was found to be 0.2503 K cal/mole at $\phi = 300^\circ$. The allowed region for this pair is at $\phi = \text{from } 0^\circ \text{ to } 250^\circ$ (Fig. 6). Figure 7 shows the serious type of short contact for the pairs $O_6 - O_5$ and $O'_6 - O'_5$. This is also confirmed from potential energy calculation (Figs. 5 and 6). Present calculations suggest that an intra sheet O_6 . H... O_6

Fig. 7. The plot of rij versus ϕ and ϕ' (ϕ and ϕ' represents rotation of O₆ and O'₆ respectively) keeping the 2nd atom fixed.

hydrogen bond can be formed. Such type of H-bond is necessary to stabilize the structure.

References

- 1. J. Mond, Enzymes Units of Biological Structures and Function, (New York, Academic Press, 1956).
- W. Boos, P. Schaedel and K. Wallen felds, Eur. J. Bio-Chem., 1, 382 (1967).
- M.E. Rafestin, A. Obrenovi tch, A. Oblin and M. Monsigny, FEBS lett., 40, 62 (1974).
- E. Jr. Steers, P. Ouatrecaseas and H.B. Polland, J. Biol. Chem., 246, 196 (1971).
- 5. M. Claeyssens, H. Kersters Hilderson, J.P. Vanwauve and C.K. De Brugue, F E B Slett., II, 336 (1970).
- 6. Serge Perez and Caroll Vergelati, Acta Cryst., **B40**, 294 (1984).
- F. Takusagawa and R.A. Jacobson, Acta Cryst., B34, 213 (1978).
- 8. S.S.C. Chu and G.A. Jeffrey, Acta Cryst., 23, 1038 (1967).
- 9. M.E. Gress and G.A. Jeffrey, Acta Cryst., B33, 2490 (1977).
- Z.S. Saify and M.A. Haleem, Pak. j. sci. ind. res., 31, 245 (1988).
- M.A. Haleem, Meena Ramzan Ali and Z.S. Saify, Pak. j. sci. ind. res., 31, 330 (1988).
- 12. M.A. Haleeem and Z.S. Saify, Pak. j. sci. ind. res., 29, 19 (1986).
- M.A. Haleem and Z.S. Saify, Pak. j. sci. ind. res., 32, 74 (1989).
- 14. M.A. Haleem, Meena Ramzan Ali and Z.S. Saify, Pak. j. sci. ind. res., **32**, 76 (1989).