Pak. j. scic. ind. res., vol. 35, no. 9, September 1992

BACTERIOLOGICAL STATUS OF DRINKING WATER IN RURAL AREAS OF PESHAWAR

Surruya Wadud, Saida Kosar, Hussan Ara Fazal and Hamida Abid PCSIR Laboratories, Jamrud Road, Peshawar, Pakistan

(Received December 31, 1990; revised September 24, 1992)

A study was carried out on the occurance and distribution of different types of bacteria present in the drinking water of 12 villages near Peshawar from different sources i.e. well, tube-well, canal and river. 120 samples were analysed and the different types of pathogenic bacteria detected were of the type *E.coli*, *Salmonella*, *Shigella* and *Streptococcus*. The most prevalent was the coliform bacteria. A lot of variation was observed in the total bacterial count present in the various sources. Except a few samples almost all the samples had a total bacterial count as well as total faecal coli-form MPN beyond the standard values.

Key words: Bacteriology, Drinking water, Rural areas.

Introduction

Water is often a main source of infection because it carries a number of micro-organisms. Microbiological status is commonly employed for determining the quality of water. Previously, methods were evolved for the detection of organic matter in water by chemical means and further methods were elaborated depending on the estimation of free and albuminoid ammonia, chlorine, nitrate and nitrites for distinguishing between organic matter of animal and plant origin. Though considerable progress was made it was found that these tests were not sufficiently accurate or specific for the detection of minor degrees of sewage contamination. With the development of bacteriology, efforts were made to supplement the chemical analysis [1].

Amongst the different techniques, total bacterial count is easier to detect the bacterial population in water than coliform index. It is not an important parameter considered for potability test of water, but it is total coliform count.

Gestroenteritis, diarrhoca, typhoid are common problems of public health in rural areas of Peshawar region. Thousands of people suffer from dysentry, cholera [2] due to water borne bacteria. The use of water from canal, well, tubewell, hand pump, spring water and shallow wells is the main cause of such diseases. The water from these sources is collected in Matkas, pit, tank, etc. and after 12-14 hr. decantation, it is used for drinking purposes. The present work deals with the bacteriological examination of drinking water and to confirm the presence of pathogens such as *Salmonella*, *Shigella*, etc., in drinking water.

Materials and Methods

Sampling. Glass stoppered, sterilized bottles of 500 ml capacity were used to collect the samples.

Water samples. Sixteen locations were selected near Peshawar region for collecting water from well, tube-well, canals and river.

Media. Different types of media used for estimation of Coliform, Faecal coliform, Streptococci, Salmonella and Shigella are as follows:

For total count nutrient agar was used as a culture media. For total *coli* MPN and *Faecal coliform* MPN. Lactose broth was used for presumptive test and brilliant green lactore bib broth and endoagar were used for confirmatory.

For *Shigella* and *Salmonella*, only those organisms are reported which grow on Bismuth sulphit agar and desoxycholate agar and for *Streptococcus faecalis* nutrient agar was used [4].

Results and Discussion

Results of the bacteriological examination of drinking water from various localities of the rural areas of Peshawar region are shown in Tables 1-3. Total bacterial count per ml as well as most probable number of total Coliform and Faecal coliform per 100 ml is very high ranging from a few organisms per 100 ml to thousands of organisms. Total count of sixteen samples out of one twenty samples is within the required standard and total coli MPN as well as Faecal coliform MPN is also within the standard range. Moreover, pathogenic organisms are absent and water of these sixteen samples is potable. Total bacterial count of sixteen samples is within the normal range whereas total Coli MPN and total Faecal coliform MPN is much higher than the required standard value, hence the samples are unfit for human consumption. Rest of the samples show both a high total count and Coliform MPN and are not suitable for drinking. As Coliform are indicative of faecal contamination their presence in drinking water in such high number is alarming. The presence of pathogens i.e. Salmonella, Shigella and Streptococcus faecalis was also confirmed. Salmonella, is present in thirty-five samples, Streptococcus faecalis in twenty-eight samples and Shigella in twenty samples. From sixteen sources five samples were from tube-well, seven from well, three

TABLE 1. BACTERIOLOGICAL EXAMINATION OF DRINKING WATER COLLECTED FROM TUBE WELL

Site	Nature of sample	Total count /ml	Coliform MPN/100ml	Faecal coliform MPN/100ml	Salmonella /1000ml	Streptococcus /1000ml	<i>Shigella</i> /1000ml
Bashir Abad	Tube-well	95 80 40	40 20 2	2 1 Nil	1 Nil Nil	1 Nil Nil	1 Nil Nil
		20 10 230	Nil Nil 1	Nil Nil 1	Nil Nil 1	Nil Nil Nil	Nil Nil Nil
Palosi Atozai	Tube-well	917 200 400 350	2 35 50 100	3 2 5 3	Nil Nil 1 Nil	Nil Nil 1 Nil	1 1 Nil Nil
		170 200 160 830 700	10 15 40 30 15	4 3 20 10 15	1 Nil 1 Nil Nil	Nil Nil 1 1	Nil 1 Nil Nil 1
Kachi Garhi	Tube-well	3000 1150 2500 1100	40 10 7 0	20 2 Nil Nil	1 Nil Nil Nil	1 Nil Nil Nil	Nil Nil Nil Nil
		1005 930 250 2000	6 1 Nil 20	3 1 Nil 10	Nil Nil Nil 1	Nil Nil Nil 1	Nil Nil Nil Nil
Bashir Abab	Hand Pump	90	50	3	Nil	Nil	Nil
Saced Abad	Tube-well	Nil 100 80 200 100 150	Nil 5400 Nil 150 60 40	Nil Nil Nil Nil 2	Nil Nil Nil 1 Nil Nil	Nil Nil Nil 1 Nil Nil	Nil Nil Nil 1 Nil Nil
· 12		80 90 80	2 Nil Nil	Nil Nil Nil	Nil Nil Nil	Nil Nil Nil	1 Nil Nil

TABLE 2. BACTERIOLOGICAL EXAMINATION OF DRINKING WATER COLLECTED FROM WELL.

Site	Nature of sample	Total count /ml	Coliform MPN/100ml	Faecal coliform MPN/100ml	Salmonella /1000ml	Stretococcus /1000ml	<i>Shigella</i> /1000ml
Garhi Bad Shah Gul	d Shah Gul Well-I 4700 3500		1100	1	Nil	Nil	
G <mark>arhi</mark> Bad Shah Gul	Well-II	2900 2013 8000 2000 3500	2800 3500 435 1000 230	460 0 35 40 10	1 Nil 1 Nil Nil	1 Nil 1 Nil Nil	Nil 1 Nil Nil 2
		2500 4000 4000	115 2400 200	4 3 1	1 Nil Nil	Nil Nil Nil	Nil Nil Nil
Bud Bair	Well	985 800	497 200	3 Nil	1 1	Nil Nil	1 Nil
		1001 835 728 500	10 70 40 20	Nil 10 5 1	Nil Nil Nil 0	1 1 Nil Nil	Nil Nil Nil Nil
		478	1	Nil	Nil	Nil	0
Regi	Well	150 90 71	Nil Nil 1	Nil Nil Nil	Nil Nil Nil	Nil Nil Nil	Nil Nil Nil
		15 200 90	1 5 40	Nil 3 2	Nil 1 Nil	Nil Nil Nil	Nil Nil Nil
		75	1	Nil	Nil	Nil	Nil (Contd)

(Table 2, Contd.)

(00	7	2711		Cod Larry T	2111
		80 60 200 70	1 2 Nil	Nil Nil Nil Nil	Nil Nil 1 Nil	Nil Nil Nil Nil	Nil Nil Nil Nil
Mulazai	Well	90 70 4 90 80 60	50 40 1 20 60 30	0 35 Nil 15 0 10	Nil Nil Nil Nil 1	1 Nil Nil Nil Nil 1 1	Nil Nil Nil Nil Nil
Kohat Road	Well-I	28 40 20 10	50 20 Nil Nil	40 1 Nil Nil	Nil Nil Nil Nil	1 Nil Nil Nil	1 Nil Nil Nil
Kohat Road	Well-II	836 530 400 500 150 135	40 20 1 Nil Nil 2	20 Nil Nil Nil Nil Nil	1 Nil Nil Nil Nil Nil	Nil Nil Nil Nil Nil Nil	Nil Nil Nil Nil Nil

TABLE 3. BACTERIOLOGICAL EXAMINATION OF DRINKING WATER COLLECTED FROM CANAL/SPRING.

Site	Nature of sample	Total count /ml	Coliform MPN/100ml	Faecal coliform MPN/100ml	Salmonella /1000ml	Stretococcus /1000ml	Shigella 1000ml	
Achini Bala	Canal	28700	24000	2400	1	Nil	Nil	
		4105	Nil	Nil	Nil	Nil	Nil	
		53166	24000	1500	1	1	1	
		2829	3500	Nil	Nil	Nil	Nil	
		15805	1600	1500	1	Nil	Nil	
		520	Nil	Nil	Nil	Nil	Nil	
		11200	2300	40	Nil	Nil	Nil	
		10500	130	20	Nil	Nil	Nil	
		412	Nil	Nil	Nil	Nil	Nil	
		630	200	50	1	1	Nil	
		535	40	20	1	Nil	Nil	
		5200	20	10	Nil	Nil	Nil	
		1230	10	5	Nil	Nil	Nil	
		1150	7	4	Nil	Nil	Nil	
		9700	200	40	Nil	Nil	Nil	
Haji Banda	Canal	5410	Nil	Nil	Nil	Nil	Nil	
		18000	24000	Nil	3	3	1	
		1930	2400	Nil	Nil	1	Nil	
		1900	Nil	Nil	1	1	Nil	
		3115	200	10	1	1	Nil	
		2500	50	40	1	Nil	Nil	
		1103	40	30	Nil	Nil	1	
		2900	20	10	1	Nil	1	
		1000	480	5	2	Nil	Nil	
		500	200	1	Nil	1	Nil	
		930	Nil	Nil	Nil	2	Nil	
		835	50	40	Nil	Nil	Nil	
Sarband	Bara River	400000	3500	2400	Nil	3	1	
		11200	130	90	Nil	Nil	1	
		45	450	430	Nil	Nil	Nil	
		2900	350	230	Nil	Nil	Nil	
		7693	9200	930	Nil	Nil	Nil	
		27000	24000	Nil	Nil	Nil	Nil	
		3200	2400	Nil	Nil	Nil	Nil	
		6530	200	40	Nil	Nil	Nil	
		3450	100	10	1	1	Nil	
		2530	26	2	1	2	Nil	
		1535	20	4	Nil	1	Nil	
		1030	10	3	1	Nil	Nil	
		1520	7	4	Nil	Nil	Nil	
		1105	60	7	Nil	Nil	Nil	
Bashir Abad	Spring	60	1700	0	Nil	Nil	Nil	

from canal and one from spring. Among the thirty three samples (Table 1) collected from various tube wells, six samples are potable whereas twenty-seven samples are unfit for human consumption. Forty-five samples (Table 2) procured froms seven wells, ten samples are potable whereas thirty-five samples are not potable. Forty-two samples (Table 3) obtained from five sources of canal and spring are not fit for human consumption. Water from most of the sources is unfit for drinking, majority of the organisms belong to the coliform group. This investigation leads to the conclusion that the water used for drinking purposes is highly contaminated by faecal organisms in the rural areas of Peshawar. This means that apart from canal, spring and

fraction A. Fraction A was ovaporated (5 g) and taken in actione. The accione-soluble portion (4 g) was cluted on a column of silica get with petroleum ether followed by petroleum ether-ethyl acetate (1:1) and then pure ethyl acetate. The petroleum ether fraction was concentrated and separated by preparative thin tayer chromatography, using the mixture of petroleum ether-chloroform (1:3) as an eluent system to obtain substance VII as a viscous mass (0.29 g), this was rechromatographed by flash column chromato-graphy. The column was eluted with hexane and with a mixture of hexane-chloroform in various ratios. Lupcol palmitate (1) was obtained as a waxy mass (0.005 g) by clutting the column with bexane-chloroform (9:1).

β-Amyrin palmitate [2] was obtained from the actione extract (67 g) which was chromatographed on a column of silicia gel and cluted with hexane followed by hexane-ethyl silicia gel and cluted with hexane followed by hexane-ethyl action B (5.82 g) obtained by cluting the column with hexane-ethyl acting (4:1) was rechromatographed on a small column. 2 alongwith some amount of 1 was separated as a semisolid mass by cluting the column with hexane. It was further purified (0.33 g) by preparative thin layer chromatography using hexane- ethyl acetate (9:1) as

The subsequent cludion of fraction B with more hexane gave lupcol acctate [4] and taraxasterol acctate [4] as a white crystalline homogeneous mass (0.157 g). It was recrystallized from extended

On turbor clubon of accione extract (see p-amyon palmiate) on column with hexane-eifyl acciate (4:1) resulted in fraction C (3.38 g). This was rechromatographed on small scale column of silica, and cluted with hexane and mixtures of various ratios of hexane-cibyl acctaire. Taraxasterol [5] was separated out as a crystalline material (0.01 g) with the hexaneathyl acctait (9:1) as cluent system. It was recrystallized from where-methanol.

Identification. The testemenoids were identified mostly

shallow wells, even the water from most of the tube-well is also contaminated.

References

- Standard Methods for the Examination of Water Sewage and Industrial Waste (Public Health Association Inc. New York, 1955), 10th ed., pp. 411.
- Zahir Ahmed, Iqbal Ahmed Poshni and Mahmood A. Siddiqui, Pak. j. sci. ind. res., 7, 103, (1964).
- 3. Standard Methods for the Examination of Water and Waste Water (1975), 14th ed., APHA-AWWA-WPCF (1958).
- 4. C.H. Chalmers, *Bacteria in Relation to the Milk Supply* (London-1955), 4th ed.

tribe inuleae of the Compositae. This tribe is well represented in the European (lora (27 genera, 116 spp.) and is especially abundant in South Africa and Australia. There are some 200 genera and 2000 species in this tribe. The inuleae includes a selection of plants which have been prized by man for their useful properties [1].

Various plants belonging to the genus Inula are reported to possess bactericidal [2], toxic [3] and physiological properties [4,5], it is reported that the oil obtained from Inula grantioides has antibiotic properties [6]. The plant has been used by local people in Lasbela for the patients suffering from asthma [7], Lupcol palmitate and β-amyrin palmitate isolated from the plant are reported [8] to possess a protective effect against the CCI, induced hepatic damage. This supports

Though the presence of terpenoids sterols, flavonoids, alkaloids, lipids, polyacctylenes etc. have been reported in the literature [9,10] from various other species, no systematic work on chomical constituents of *Inula grantioides* has been done so far. Therefore, an attempt was made to isolate and identify the terpenoids present in the flowers of this species. Five triterpenes, lupeol palmitate [1], \$\textit{B}\$-amyrin palmitate [2], lupeol acetate [3], taraxasterol acetate [4] and taraxasterol [5] were isolated from the flowers of *Inula grantioides* and identification was carried out mostly by spectroscopic methods.

The lupeot acetate is found [11] to possess bactericidal and fungicidal activities. It is effective against Staphylococcus awens and Candida albicans. Taraxasterol acetate demonstrated [12] anti-inflammatory activity in albino rats against carrageenan, formaldehyde and adjuvant induced inflammations.

Extraction. The dried and coursely milled flowers of limits grantioides were extracted separately in two parts. One

H.H.J. Research Institute of Chemistry, University of Karachi, Karachi. 75270, Pekistan.

^{**}Institute of Chemistry University of Sindly Jamehous Pakistan