Physical Sciences Section

Pak. j. sci. ind. res., vol. 34, no. 5, May 1991 and an analytic divergence bewords HO and allow equate HO bas HO

PINNATIFOLIDE, A NEW METABOLITE FROM RED ALGA LAURENCIA PINNATIFIDA LAMOUR

VIQAR UDDIN AHMAD, MOHAMMAD SHAIQ ALI, SHAHEEN BANO AND MUSTAFA SHAMEEL* H.E.J. Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan

(Received December 13, 1990; revised July 31, 1991)

A new metabolite pinnatifolide has been isolated from methanolic extract of red alga *Laurencia pinnatifida*. It showed significant antibacterial activity against gram positive bacteria. Spectroscopic methods have been used to characterise pinnatifolide as tris- β -butyrolactone.

Key words: Pinnatifolide, Red alga, Laurencia pinnatifida Lamour.

Introduction

The red alga *Laurencia* has been subjected to intensive chemical investigation due to the presence of unusual halogenated sesquiterpenoid and C_{15} nonterpenoid structures [1]. The methanolic extract of *L. pinnatifida* has shown significant activity against gram positive bacteria [2].

We have already reported the isolation of pinnatazane [3], pinnatifidone [4], laurol [5], and now we wish to report the isolation of a new metabolite pinnatifolide (1) from methanolic extract of *L. pinnatifida* which to our knowledge has not been isolated so far from a natural source. It showed significant antibacterial activity against *S. dysenteria*, *S. sonnei*, *S. aureus* and *B. subtilis* and weak activity against *S. typhi* and *S. Schottmuelleri*.

(Dotted lines represent three units of trimer)

Experimental

Melting point was recorded in glass tube and was incorrected. I.R. spectrum was measured on JASCO IRA-1 spectrometer. The ¹H-NMR and ¹³C-NMR spectra were recorded in CDCl₃ on Bruker 400 and 100.61 Hz respectively. Mass spectrum was recorded on Finnigan MAT-112 and 312 double focussing mass spectrometer connected to PDP 11/34 computer system.

Collection and identification-The alga L. pinnatifida was collected from Buleji near Karachi coast of Arabian sea. It was identified by Prof. Mustafa Shameel, Department of Botany, University of Karachi, where a voucher specimen (no. MS-1734) has been deposited in the herbarium of the Botany Department.

*Department of Botany, University of Karachi, Karachi-75270, Pakistan.

natifida was extracted in a Soxhlet apparatus with chloroform and then with methanol (each 8h). The methanolic extract after evaporation under reduced pressure was subjected to column chromatography on silica gel eluted with hexane, hexane:ether, ether, ether: chloroform, chloroform, chloroform:methanol and finally with pure methanol in order of increasing polarity. The compound (1) was eluted with pure chloroform. m.p.: 252°, [α]D: -9.8° (*c*=0.02, chloroform); ¹H-NMR (CDCl₃, 400 MHz): δ 1.26 (3H, d, J=6.3 Hz), 2.40 (1H, dd, L=15.4, 5.8 Hz), 2.50 (1H, dd, L=15.4, 7.4 Hz), 5.25 (1H, etc.)

Extraction and isolation. 3 Kilogram (wet wt.) of L. pin-

 $(\text{CDCl}_3, 400 \text{ MHz}): \delta 1.26 (3\text{H}, \text{d}, \text{J}=6.3 \text{ Hz}), 2.40 (1\text{H}, \text{dd}, \text{J}=15.4, 5.8 \text{ Hz}), 2.50 (1\text{H}, \text{dd}, \text{J}=15.4, 7.4 \text{ Hz}), 5.25 (1\text{H}, \text{m}, \text{W}_{1/2}=9.8 \text{ Hz}); {}^{13}\text{C}\text{-NMR} (\text{CDCl}_3, 100.61 \text{ MHz}): (ppm) 18.77 (CH_3), 40.79 (CH_2), 68.80 (CH), 169.09 (C=O); EIMS m/z 258 (M^*, trimer, C_{12}H_{18}O_6), 155 (M^* - C_4H_7O_3), 86 (C_4H_6O_2, \text{monomer}).$

Alkaline hydrolysis. 5 Milligram of compound (1) was refluxed with 10% methanolic KOH for 4 hrs. After evaporation of methanol under reduced pressure the residue was acidified with H_2SO_4 and then extracted with ethyl acetate which after evaporation afforded gummy compound, $[\alpha]D=+29^{\circ}$ (c=0.341, CHCl₃) identified as 3-hydroxybutanoic acid.

Results and Discussion

The methanolic extract of L. *pinnatifida* was loaded on silica gel column which afforded crystalline compound (1) with pure chloroform and after recrystallization from methanol a white powder was obtained.

The ¹H-NMR spectrum exhibited signals at δ 1.26 (3H, d, J=6.3 Hz), 2.40 (1H, dd, J=15.4, 5.8 Hz), 2.50 (1H, dd, J=15.4, 7.4 Hz) and 5.25 (1H, m, $W_{1/2}$ =9.8 Hz). The irradiation at δ 5.25 resulted in the simplification of signals at δ 2.40 and 2.50 into two doublets (J=15.5 Hz) and (15.5 Hz) respectively. The methyl doublet at δ 1.26 was changed into a singlet. While upon irradiation at δ 2.40 and 2.50 the doublet at δ 1.26 remained unchanged and the signal at δ 5.25 was simplified into a distorted triplet. This clearly indicates the linkage of CH with

 CH_2 and CH_3 groups while the CH_2 showed coupling with CH only.

The ¹³C-NMR spectrum exhibited only four signals at 18.77 (CH₂), 40.79 (CH₂), 68.80 (CH), 169.09 (C=O) ppm. The chemical shift at 169.09 ppm indicates ester or carboxylic acid. The compound did not react with diazomethane or with acetic anhydride/pyridine showing the absence of carboxyl or hydroxyl group in the molecule and supporting the presence of a lactone ring. The alkaline hydrolysis of the lactone furnished 3-hydroxybutanoic acid, $[\alpha]D=+29^{\circ}$ (c=0.341, CHCl₂), the structure of which is confirmed through ¹H-NMR spectrum. It exhibited a carbinylic signal which is shifted upfield to δ 4.21 as multiplet due to the presence of hydroxyl group instead of ester linkage while a multiplet appeared in the region between $\delta 2.2-2.7$ due to CH₂ group next to C=O function. The optical rotation of the compound is consistent with the S configuration of 3-hydroxybutanoic acid. The above spectroscopic data led to the deduction of the structure of compound as β -butyrolactone but the I.R. spectrum showed the carbonyl absorption at 1720cm⁻¹ typical of an ester group instead of a four membered lactone. This was further supported by the mass spectrum of (1). It exhibited a very weak molecular ion peak at m/z 258 corresponding to the molecular formula C12H18O6 which clearly indicates the presence of trimer of β -hydroxybutyric acid lactone. The other strong peak at m/z 155 appeared due to the loss of C₄H₇O₃ while the fragment at m/z 86 corresponds to the monomer of β -butyrolactone. On the above mentioned spectral and chemical evidence the structure (1) has been assigned to pinnatifolide.

Acknowledgement. This research has been supported in part by the International Foundation for Science (Sweden).

References

- K.L. Erickson, *Marine Natural Products*, P.J. Scheuer, ed., (Academic Press, New York, 1983), Vol. V, pp. 144-242.
- K. Usmanghani, M. Shameel, M. Sualah, K.H. Khan and Z.A. Mahmood, Fitoterapia, LV, 2, 73 (1984).
- Atta-ur-Rahman, V.U. Ahmad, S. Bano, S.A. Abbas, K.A. Alvi, M.S. Ali, H.S.M. Lu and J. Clardy, Phytochemistry, 27, 3879 (1988).
- S. Bano, M.S. Ali and V.U. Ahmad, Z. Naturforsch., 43(b), 1347 (1988).
- V.U. Ahmad, M.S. Ali and S. Bano, Sci. Pharm., 58, 299 (1990).