Physical Sciences Section

Pak. j. sci. ind. res. vol. 34, no. 11, November 1991

SYNTHESIS AND SOME REACTIONS OF 2 (α-PHENYLIMIDO-*p*-CHLORO)-STYRYL-3, 1-BENZOXAZIN-4 (H) ONE

R.M. SALEH, H.M. BAKEER* AND O.E.A. MUSTAFA** Faculty of Engineering, Suez Canal University, Port-Said, Egypt

(Received September 13, 1990; revised December 24, 1991)

 $2-(\alpha$ -phenylimido-*p*-chloro)-styryl-3, 1-benzoxazin-4 (H)-one 1 has been prepared. <u>1</u> reacts with different nitrogen nucleophiles under different reaction conditions to give compounds 2- 5 while its thionation with P_2S_5 gives the corresponding benzothiazin-4-thione 6. Arylation of 1 under Friedel-Crafts condition afforded the corresponding o-arylaminocarbinol 9, while its reaction with Grignard reagents gave the o-amidophenyl alkyl ketone 10.

Key words: Benzoxazin-4-ones, Nucleophilic and electrophilic reactions.

Introduction

In continuation of our work on the reactions of heterocyclic compounds [1-4], in addition to what has been reported earlier [5-8] concerning the biological importances of benzoxazinones and quinazolones, we report herein the synthesis and reactions of $2(\alpha$ -phenylimido-*p*-chloro)-styryl-3, 1-benzoxazin-4 (H) one 1 in order to study the steric and polar factors of α -phenylimido-*p*-chlorostyryl moiety as a bulky substituent in position-2 on the reactivity of the benzoxazinone nucleus towards some nitrogen and carbon nucleophiles.

Results and Discussion

Compound 1 was prepared via interaction of anthranilic acid with 2-phenyl-4(*p*-chlorobenzylidene)-5(4)-oxazolone. The IR spectrum of 1 showed bands at 1795, 1745, 1640 and 3300–3230 cm⁻¹ due to CO, C=N, C=C and NH functions and its PMR spectrum (DMSO – d_6) showed signals at δ 7.5–8.2 (*m*, 13H, ArH and 1H olefinic) and at 10.4 (<u>s</u>, br, 1H, NH).

Recently [9-12], it was reported that 2-substituted 3, 1-benzoxazin-4 (H) ones underwent hetero-ring opening on reaction with nitrogen nucleophiles and afforded cinnamide derivatives. By analogy, aminolysis of 1 with amines such as aniline, glycine and/or piperidine in boiling ethanol gave 2-(substituted) carbamoyl phenyl acetanilides 2a-c, while on hydrazinolysis with hydrazine hydrate, phenylhydrazine or 2, 4-dinitrophenyl-hydrazine yielded N (substituted) anthranilic acid hydrazide derivatives 2_{d-f}. The IR spectra of 2 exhibited bands at 3310-3220 and 1730-1700cm⁻¹ due to CO and NH functions and PMR spectrum of 2b (DMSO $- d_s$) showed signals at 84.4 (d, br 2H, NH CH, COOH), 7.1-8.6 (m, 13H of Ar H and 1H olefinic), 10.1, 11.2 (2 x br., 2H, NH disappeared by adding D₂O) and 11.8 (br., 1H, COOH) while 2e (DMSO-d_c) showed signals at 6.6 \delta(s, 1H, olefinic), 7.3-8.7 (m, 18H, Ar H) and broaded centred at 10.7 (4H of NH dissappeared by adding D₂O).

On the other hand, aminolysis or hydrazinolysis of 1 in boiling acetic acid or in ethanol and fused sodium acetate gives 2-(a-phenylimido-p-chloro) styryl-3-alkyl and/or aralkyl-4(3H) quinazolinones 3a-j. The structure of compound 3a-j was confirmed by ring closure of 2a and 2_{d-f} with acetic anhydride to give the corresponding 3c and 3 g-i respectively. Acylation of 3j with acetic anhydride or benzoyl yielded 3k and 3I. The structures were also confirmed spectroscopically; the IR spectra of 3 exhibited absorption bands at 3180-3290, 1685-1700 and 1660-1680cm⁻¹ due to NH and CO functions and the PMR spectrum of $3c (DMS'O - d_s)$ showed signals at δ 6.8 (s, 1H, olefinic), 7.3–8.8 (m, 18H, ArH) and 11.4 (s, br, 1H, NH disappeared by adding D₂O) while the PMR spectrum of 3h (CDCl₂) showed signals at 8 6.6 (s, 1H, olefinic), 7.2-8.3 (m, 18H, ArH) and 11.7 (s, br., 1H, NH) and the PMR spectrum of 3j (CDCl₂) showed signals at $\delta 6.5$ (s, 1H, olefinic), 7.1–8.6 (m, 13H, ArH) and 10.1 (b, s, 1H, NH). It was reported earlier [10-12], that benzoxazinone derivatives underwent the hetero-ring opening on reaction with sodium azide and phosphorus pentasulphide and afforded tetrazole and thione derivatives. In the present work, when the benzoxazinone 1 was submitted to react with sodium azide in boiling acetic acid, thiosemicarbazide in boiling pyridine, or phosphorus pentasulphide in xylene yielded the 1-1-[(2'-carboxyphenyl)-2-banzamido-(p-chloro) styryl]-tetrazole 4, the 3,5-disubstituted-s-triazolo [3, 4-c] quinazoline 5, or the 2-substituted 3, 1-benzothiazine-4(H)-thione 6, respectively. The IR spectrum of compound 4 exhibits strong absorption bands at 3325, 3100, 1660, and 1100cm⁻¹ attributable to vOH, vNH, vCO and the tetrazole nucleus. The IR spectrum of compound 5 exhibits absorption bands at 3270, 1690, 1620 and 1320cm⁻¹ due to UNH, UCO, UC=N and UC=S respectively. The IR spectrum of compound 6 exhibits absorption bands at 1680, 1640, 1330 and 3230cm⁻¹ due to CO, C=N, C=S and NH functions respectively.

Amination of 6 with aniline or anisidine in boiling acid containing fused sodium acetate gave the corre

 ^{*} Faculty of Education, El-Fayoum, Cairo University, Egypt.
** Faculty of Science, Ain Shams University, Cairo, Egypt.

2-(substituted)-quinazolin-4-thiones 7a,b. The IR spectra showed bands at 1700-1600, 1630, 1350 and 3260 cm⁻¹ due to CO, C=N, C=S and NH functions respectively.

Benzoxazinone derivatives react with aromatic hydrocarbons with hetero-ring fission [10,11,13,14]. Thus, arylation of compound 1 with aromatic hydrocarbons such as benzene, toluene, anisole or *m*-xylene under Friedel-Crafts conditions gave o-(Substituted)-phenyl ketones 8_{a-d} . The IR spectra of 8 showed absorption bands at 1660–1680 and 3240–3300cm⁻¹ attributable to ketonic, amido CO and NH functions. The PMR spectrum of 8a (DMSO – d_6) showed signals at δ 6.7–8.6 (<u>m</u>, 19H, ArH and olefinic) and 11.8 (br, <u>s</u>, 2H, NH).

It was reported that [14], 2-isopropyl 4(H), 3-1-benzoxazin-4-one reacted with alkyl and/or aryl halides and yielded carbinols. Compound 1 reacted with Grignard reagents to give 2-(substituted amido) phenyl disubstituted carbinols, while the reaction of 1 with phenyl magnesium iodide gave o-aroylaminocarbinol 9. The IR spectrum of 9 showed bands at 3450, 3100 and 1670cm⁻¹ due to OH, NH and CO functions respectively and the PMR spectrum (DMSO – d₆) showed signals at δ 4.6 (s, br; 1H, OH), 6.8–8.4 (*m*, 24H, ArH and olefinic) and 11.3 (s, br., 1H -NH-). Furthermore, 1 reacted with benzyl magnesium chloride to give o-amidophenyl alkyl ketone 10. The IR spectrum of 10 showed bands at 3200, 1670, 1610 and 1580 cm⁻¹ due to NH, CO, C=N and C=-C functions.

Experimental

Melting points are uncorrected and were determined using a Gallenkamp melting point apparatus. IR spectra were recorded in KBr using an Unicam SP 1200 spectrophotometer and PMR spectra on a varian Em-390, 90 MHz instrument using TMS as an internal standard. The physical data of the various compounds prepared are given in Table1.

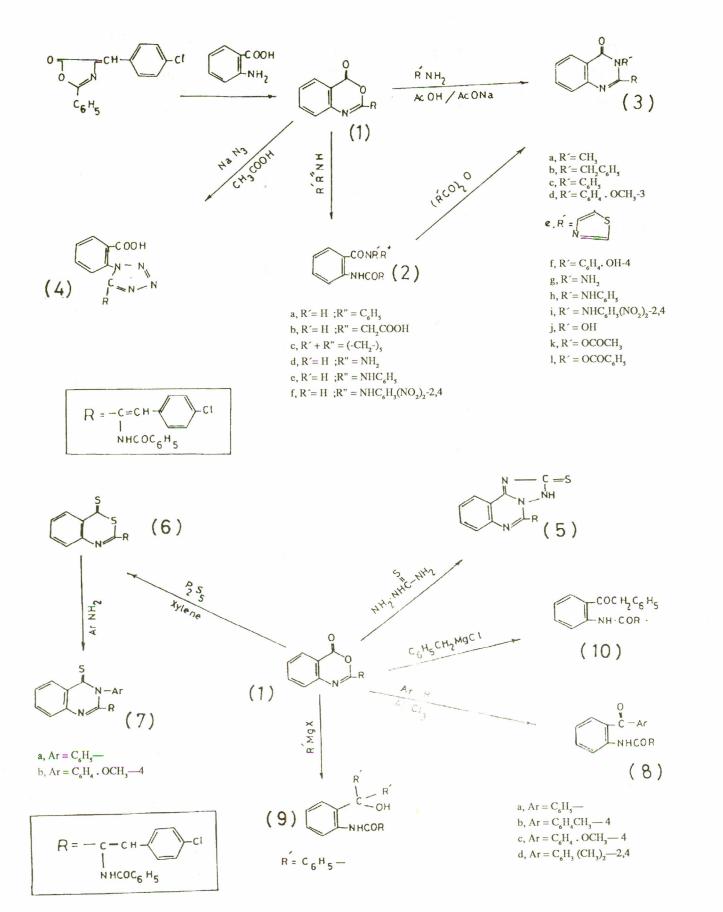
Preparation of compound 1. A mixture of 2-phenyl-4-(o-chloro) benzylidenc-5(4)-oxazolone (0.05 mol) and anthranilic acid (0.035 mol) in boiling *n*-butanol (100 mL) was refluxed for 10 hrs. The solid product was crystallised from acetic acid to give 1.

Aminolysis and hydrazinolysis of 1 in boiling ethanol: Formation of 2a-f. A solution of 1 (0.01 mol) and aniline, glycine, piperidine (0.01 mol) or a hydrazine, namely hydrazine hydrate, phenylhydrazine and 2,4-dinitrophenylhydrazine (0.03 mol) in ethanol (50 mL) was refluxed for 4–8 hrs. The solid product obtained on cooling was crystallised from ethanol to give 2 a-f respectively.

Aminolysis and hydrazinolysis of 1 in boiling acetic acid: Formation of 3a-i. A mixture of 1 (0.01 mol) and a primary amine such as methylamine, benzylamine, aniline, *m*-anisidine, 2-aminothiazole, 4-aminophenol (0.01 mol), or hydrazines, namely hydrazine hydrate, phenylhydrazine or 2, 4-dinitrophenylhydrazine, (0.03 mol) in acetic acid (50 mL) was refluxed for 6–8 hrs. The solid which separated was

Compd.	M.P. °C Colour	Yield %	Formula Mol. wt.				
				Found (%)		(Ca	lc.)
				С	Н	N	Cl
1	166	85	C ₂₃ H ₁₅ O ₃ N ₂ Cl	68.75	3.76	6.90	8.90
	Yellow		402.5	(68.57)	(3.72)	(6.95)	(8.82)
2 _a	234	70	C29H22O3N3Cl	70.4	4.55	8.30	7.25
	Colourless		495.5	(70.23)	(4.44)	(8.47)	(7.16)
2 _b	250	75	C25H2005N3Cl	62.95	4.10	8.92	7.5
	Colourless		477.5	(62.83)	(4.18)	(8.79)	(7.43)
2 _c	138	65	C ₂₈ H ₂₆ O ₃ N ₃ Cl	68.85	5.21	8.70	7.40
	Pale Yellow		487.5	(68.92)	(5.33)	(8.61)	(7.28)
2_{d}	118	77	$C_{23}H_{19}O_{3}N_{4}Cl$	63.40	4.40	13.00	8.30
	Pale Yellow		434.5	(63.52)	(4.37)	(12.88)	(8.17)
2 _c	217	65	$C_{29}H_{23}O_{3}N_{4}Cl$	68.30	4.40	10.80	7.10
	Pale Yellow		510.5	(68.16)	(4.51)	(10.96)	(6.95)
2 _f	214	70	$C_{29}H_{21}O_7N_6Cl$	57.80	3.60	13.85	6.00
	Colourless		600.5	(57.95)	(3.49)	(13.98)	(5.91)
3 _a	148	70	$C_{24}H_{18}O_2N_3Cl$	69.50	4.20	10.20	8.60
	Pale Yellow		415.5	(69.31)	(4.33)	(10.11)	(8.54)
З _ь	122	65	C ₃₀ H ₂₂ O ₂ N ₃ Cl	73.45	4.52	8.60	7.30
	Pale Yellow		491.5	(73.24)	(4.47)	(8.54)	(7.22)
							(Contd

TABLE 1. PHYSICAL DATA OF THE VARIOUS COMPOUNDS PREPARED.


SYNTHESIS AND REACTION OF 3, 1-BENZOXAZIN-4-ONE

(Table)	l, continue)								
3.	178	68	C ₂₉ H ₂₀ O ₂ N ₃ Cl	72.95	4.30	8.95	7.48		
	Yellow		477.5	(72.88)	(4.19)	(8.79)	(7.43)		
3 _d	212	65	C ₃₀ H ₂₂ O ₃ N ₂ Cl	71.15	4.50	8.32	6.84		
	Colourless		507.5	(70.93)	(4.33)	(8.27)	(6.99)		
3.	153	55	C ₂₆ H ₁₇ O ₂ N ₄ CIS	64.50	3.40	11.52	7.52		
	Pale Orange		484.5	(64.39)	(3.51)	(11.56)	(7.33)		
				S: 6.70, (6.	.60)				
3_{f}	187	70	C ₂₉ H ₂₀ O ₃ N ₃ Cl	70.67	4.13	8.65	7.32		
	Pale Yellow		493.5	(70.51)	(4.05)	(8.51)	(7.19)		
3 _g	167	65	$C_{23}H_{17}O_2N_4C1$	66.40	4.15	13.65	8.57		
0	Pale Yellow		416.5	(66.26)	(4.08)	(13.44)	(8.52)		
3 _h	183	55	$C_{29}H_{21}O_2N_4Cl$	70.75	4.13	11.28	7.33		
	Yellow		492.5	(70.65)	(4.26)	(11.37)	(7.21)		
3,	193	70	$C_{29}H_{19}O_6N_6CI$	59.60	3.32	14.55	6.16		
	Yellow		582.5	(59.74)	(3.26)	(14.42)	(6.09)		
3 _j	235	80	$C_{23}H_{16}O_{3}N_{3}Cl$	66.00	3.88	9.82	8.42		
	Colourless		417.5	(66.11)	(3.83)	(10.05)	(8.50)		
3 _k	195	50	$C_{25}H_{18}O_4N_3Cl$	65.42	3.95	9.35	7.90		
	Brown		459.5	(65.28)	(3.91)	(9.14)	(7.72)		
3,	173	50	$C_{30}H_{20}O_4N_3Cl$	68.90	3.95	8.22	6.94		
	Brown		521.5	(69.03)	(3.83)	(8.05)	(6.81)		
4	132	50	$C_{23}H_{16}O_{3}N_{5}Cl$	61.72	3.43	15.65	7.90		
	Pale Yellow		445.5	(61.95)	(3.59)	(15.71)	(7.96)		
5	135	40	C ₂₄ H ₁₆ ON ₅ SCI	62.80	3.55	15.15	7.60		
	Yellow		457.5	(62.95)	(3.49)	(15.30)	(7.75)		
				S: 6.85, (7.					
6	218	50	C ₂₃ H ₁₅ ON ₂ CIS ₂	63.40	3.60	6.60	8.25		
	Yellow		434.5	(63.52)	(3.45)	(6.44)	(8.17)		
	S: 14.55, (14.75)								
7 _a	118	50	$C_{29}H_{20}ON_3SCI$	70.72	4.15	8.42	7.05		
	Pale Yellow		493.5	(70.51)	(4.05)	(8.51)	(7.19)		
				S: 6.52, (6.					
7 _ь	133	55	$C_{30}H_{22}O_2N_3SCI$	68.86	4.30	8.15	6.60		
	Yellow		523.5	(68.76)	(4.20)	(8.0)	(6.78)		
	S: 6.30, (6.43)								
8 _a	210	50	$C_{29}H_{21}O_{3}N_{2}Cl$	72.65	4.22	5.68	7.50		
	Colourless		480.5	(72.42)	(4.37)	(5.82)	(7.40)		
8 _b	240	45	C ₃₀ H ₂₃ O ₃ N ₂ Cl	72.62	4.55	5.75	7.35		
	Colourless		494.5	(72.80)	(4.65)	(5.65)	(7.20)		
8.	230	55	$C_{30}H_{23}O_4N_2CI$	70.70	4.57	5.27	6.85		
	Colourless		510.5	(70.50)	(4.50)	(5.50)	(6.95)		
8 _d	225	40	$C_{31}H_{25}O_{3}N_{2}CI$	73.40	5.05	5.35	6.78		
	Colourless		508.5	(73.15)	(4.90)	(5.50)	(7.00)		
9	124	60	C ₃₅ H ₂₇ O ₃ N ₂ Cl	75.35	4.95	5.15	6.30		
	Orange		558.5	(75.20)	(4.80)	(5.00)	(6.35)		
10	137	55	C ₃₀ H ₂₃ O ₃ N ₂ Cl	72.95	4.72	5.82	7.05		
	Orange		494.5	(72.80)	(4.65)	(5.65)	(7.20)		

K

· Contrastructures

419

- 1

recrystallised from ethanol or methanol to give 3a-i.

Reaction of hydroxylamine hydrochloride with 1: Formation of 3j. A mixture of 1 (0.01 mol), hydroxylamine hydrochloride (0.03 mol) and sodium acetate (0.03 mol) in ethanol (50 mL) was refluxed for 8 hrs. The reaction mixture was filtered off while hot, left to cool and the solid that separated on cooling was recrystallised from ethanol to give 3.

Action of acetic anhydride and/or benzoyl chloride on 3_j : Formation of 3k and and 3_j . A mixture of 3_j (0.01 mol) and 10 mL acetic anhydride or (0.01 mol) of 3_j and 5 mL of benzoyl chloride in pyridine (20 mL) was heated on a steam bath for 3 hrs. The solids that separated were washed with water and recrystallized from ethanol to give 3k and 3_j respectively.

Action of sodium azide on 1: Formation of 4. A mixture of 1 (0.01 mol) and sodium azide (0.015 mol) in boiling acetic acid (50 mL) was refluxed for 4 hrs and concentrated. The solid which separated was filtered, dried and recrystallised from methanol to give 4.

Action of thiosemicarbazide on 1: Formation of 5. A mixture of 1 (0.01 mol) and thiosemicarbazide (0.03 mol) in pyridine (30 mL) was refluxed for 6 hrs and the solid that separated upon cooling was filtered off, washed with light petroleum (b.p. 60–80°) and recrystallized from light petroleum to give 5.

Action of phosphorus pentasulphide on 1: Formation of 6. A suspension of 1 (0.01 mol) and phosphorus pentasulphide (0.02 mol) in dry xylene (100 mL) was refluxed for 8 hrs. The reaction mixture was filtered while hot, then concentrated, and the solid that separated on cooling was washed with light petroleum (b.p. 80–100°). Recrystallisation from ethanol gave 6.

Action of primary amines on 6: Formation of 7a,b. Equimolecular quantities (0.01 mol) of 6 and a primary amine such as aniline or *p*-anisidine was refluxed in acetic acid (50 mL) containing sodium acetate (0.01 mol) for 6 hrs and the solid that separated upon cooling was crystallised from ethanol to give 7a or 7b.

Friedel-crafts reaction of 1: Formation of 8a-d. Anhydrous $AlCl_3$ (0.03 mol) was added portionwise with stirring for 30 mins to a solution of 1 (0.01 mol) in dry aromatic reactant such as benzene, toluene, anisole or *m*-xylene. Stiring was continued for an additional 8 hrs at room temperature. The reaction mixture was the poured into ice-cold HCl. The organic layer was separated, washed with water and the excess solvent was distilled under reduced pressure. The solid obtained was crystallised from ethanol to give 8a-d.

Action of Grignard reagents on 1: Formation of 9 and 10. An ethereal solution of phenylmagnesium iodide or benzylmagnesium chloride (0.03 mol) was added in portions to a solution of 1 (0.01 mol) in dry ether. The reaction mixture was stirred for 4 hrs on a water bath then left overnight at room temperature. The reaction mixture was worked up as usual and the ethereal extract was distilled under reduced pressure to give a viscous oil, which was triturated with light petroleum to give a solid product, which was crystallised from petroleum ether to give 9 and 10 respectively.

References

- M. El-Kady, M. El Hashash, R.M. Saleh and A.M. El-Gendy, Pak. j. sci. ind. res., 27 (2), 69 (1984).
- A.Y. Soliman, N.B. El-Assy, F. El-Shahed, M. El-Kady and I.M. El-Deen, Indian J. Chem., 29, 326 (1990), Chem. Abstr., 113, 78293u (1990).
- M.A. El-Hashash, M.M. Mohamed, A.M. El-Gendy and R.M. Saleh, Pak. j. sci. ind. res., 28 (3), 151 (1985), Chem. Abstr., 105, 172378g (1986).
- S. El-Nagdy, A.Y. Soliman, M.R. Mahmoud, R. Saleh and H.M. Bakeer, Indian J. Chem., 29, 347 (1990); Chem. Abstr., 1990, 113, 78294v (1990).
- 5. R.E. Willette and Soine, J. Pharm. Sci., 51, 149 (1962).
- 6. A. Schenberg and N. Latif, J. Am. Chem. Soc., **76**, 6208 (1954).
- P.M. Bhargava N.M. Khanna and M.L. Dhar, Indian J. Chem., 2, 159 (1964).
- C. Runti, C. Nisi and L. Sindellaria, Ann. Chim. Rome, 51, 719 (1961).
- A.F. El-Farargy, M.A. El-Hashash and M. El-Aishy, Pak. j. sci. ind. res., 33 (5-6), 201 (1990).
- 10. M.A. El-Hashash, A.M. Kaddah, M. El-Kady and M.M. Ammer, Pak. j. sci. ind. res., **25**, 104 (1982).
- M.A. El-Hashash and M.A. Sayed, Egypt J. Chem., 21, 115 (1980).
- A.A. Afify, S. El-Nagdy, M.A. Sayed and I. Mohey, Indian J. Chem., 27, 920 (1988); Chem. Abstr., 110, 212760n (1989).
- S. El-Nagdy, M.A. El-Hashash, A.A. Afify and F. El-Shahed, Indian J. Chem., 28, 126 (1989).
- M.E. Ismail, N.A. Shams, M.R. Salem and S.A. Emara, J. Prakt. Chem., 325, 417 (1983).