Short Communication

Pak. j. sci. ind. res., vol. 32, no. 12, December 1989

EVIDENCE OF SOLVENT AND TEMPERA-TURE DEPENDENT MULTINUCLEAR NMR CHEMICAL SHIFTS IN 1,1,1,3,3,3-HEXA-METHYLDISILAZANE

A.W.K. KHANZADA, M.A.R. ABID AND G.H. KAZI, National Centre of Excellence in Analytical Chemistry, The University of Sindh, Jamshoro, (Received November 25, 1989)

1,1,1,3,3,3-Hexamethyldisilazane or 1,1,1-Trimethyl-N- (Trimethylsilyl)- Silanamine or briefly HMDSZ has been used as silating agent, in complex catalysis and in chromatography [1,2]. This compound here after referred as HMDSZ has been studied by uv [3], ir [4], mass spectrometry [5] and by NMR [6-10] by various workers. NMR study has been made on proton [6,7], Carbon-13 chemical shifts [9], Silicon-29 chemical shifts [8,9], Nitrogen-14 [14] and Nitrogen-15 chemicals shifts [10,15]. In these studies either a pure compound is used or a solution in CD_2CL_2 or C_6D_6 is used. Silicon-29 chemicals shifts are heavily dependent on solvents and their concentrations [11] as well as that of nitrogen [12,13].

In a recent multinuclear NMR study by us on silicon compounds, we found that HMDSZ shows solvent and temperature dependent chemicals shifts. We were unable to Nitrogen-15 resonance because of instrument study limitations. These studies were conducted on JEOL FX900 FT NMR equipped with a multinuclear and variable temperature facility. The spectra were run with 10 mm tunable probe. The 90° pulse width for proton, carbon-13, nitrogen-14 and silicon-29 were 30us, 25us, 47us, 15us respectively. The observations frequency for Nitrogen-14, Silicon-29, Carbon-13 and Proton were 6.43 MHz, 17.75 MHz, 22.49 MHz and 89.55 MHz respectively. Complete proton noise decoupling at a frequency of 1 kHz was used in case of Carbon-13, Silicon-29, and Nitrogen-14 resonances. Slight evidence of accoustic ringing was present in case of Nitrogen-14, but the peak was relatively sharp. Long delay time was used to avoid this. Temperature measurement were done by using JEOL NM-DSU digital set unit and NM-PVT variable temperature unit. The accuracy of temperature measurement was $\pm 0.5^{\circ}$. The results of these preliminary investigations in two solvents are summarized in Table 1.

TABLE 1. CHEMICAL SHIFTS OF VARIOUS NUCLEI IN TWO VARIETY OF SOLVENTS [A], AT VARIABLE TEMPERATURES IN THIS WORK HEXAMETHYLDISILAZANE (HMDSZ).

Tempera- ture °C	50% HMDSZ in CDC1 ₃ [b]	50% HMDSZ in acetone [c]	50% HMDSZ in cyclohexane[c]	55% HMDSZ in Benzene[c]	Previous work
35	0.053±0.001	0.045±0.002	0.048±0.001	0.051±0.000	0.05 [e]
50	0.053±0.001	0.045±0.002	0.048±0.001	0.051±0.000	
35	2.3-2.5[d]			3.645±0.011	
35	2.501±0.008	2.557±0.000	2.546±0.000	2.546±0.000	2.9 f]
50	2.501±0.008	2.557±0.000	2.546±0.000	2.546±0.000	
35	2.464±0.038	1.974±0.008	2.400±0.015	2.331±0.006	2.2[g]
50		2.066±0.012	2.468±0.010	2.400±0.007	2.22[f]
35	346.149±1.326	350.886±0.269	345.972±0.188	347.567±0.132	351[i]
50		350.753±0.531	345.176±0.125[h]	346.769±0.050	
	Tempera- ture °C 35 50 35 50 35 50 35 50 35 50	Temperature °C50% HMDSZ in CDC13 [b]35 0.053 ± 0.001 50 0.053 ± 0.001 35 $2.3-2.5[d]$ 35 2.501 ± 0.008 50 2.501 ± 0.008 35 2.464 ± 0.038 50 35 35 346.149 ± 1.326 50 50	Temperature °C50% HMDSZ in CDC13 [b]50% HMDSZ in acetone [c]35 0.053 ± 0.001 0.045 ± 0.002 50 0.053 ± 0.001 0.045 ± 0.002 35 $2.3\cdot2.5[d]$ 2.501 ± 0.008 35 2.501 ± 0.008 2.557 ± 0.000 50 2.501 ± 0.008 2.557 ± 0.000 35 2.464 ± 0.038 1.974 ± 0.008 50 2.066 ± 0.012 35 346.149 ± 1.326 350.886 ± 0.269 50 350.753 ± 0.531	Tempera- ture °C50% HMDSZ in CDC1_3 [b]50% HMDSZ in acetone [c]50% HMDSZ in cyclohexane[c]35 0.053 ± 0.001 0.045 ± 0.002 0.048 ± 0.001 50 0.053 ± 0.001 0.045 ± 0.002 0.048 ± 0.001 35 $2.3-2.5[d]$ 2.501 ± 0.008 2.557 ± 0.000 2.546 ± 0.000 50 2.501 ± 0.008 2.557 ± 0.000 2.546 ± 0.000 50 2.501 ± 0.008 2.557 ± 0.000 2.546 ± 0.000 35 2.464 ± 0.038 1.974 ± 0.008 2.400 ± 0.015 50 2.066 ± 0.012 2.468 ± 0.010 35 346.149 ± 1.326 350.886 ± 0.269 345.972 ± 0.188 50 350.753 ± 0.531 $345.176\pm0.125[h]$	Tempera- ture °C50% HMDSZ in CDC1, [b]50% HMDSZ in acetone [c]50% HMDSZ in cyclohexane[c]55% HMDSZ in Benzene[c]35 0.053 ± 0.001 0.045 ± 0.002 0.048 ± 0.001 0.051 ± 0.000 50 0.053 ± 0.001 0.045 ± 0.002 0.048 ± 0.001 0.051 ± 0.000 35 $2.3\cdot2.5[d]$ 3.645 ± 0.011 3.645 ± 0.011 35 2.501 ± 0.008 2.557 ± 0.000 2.546 ± 0.000 2.546 ± 0.000 50 2.501 ± 0.008 2.557 ± 0.000 2.546 ± 0.000 2.546 ± 0.000 50 2.501 ± 0.008 2.557 ± 0.000 2.546 ± 0.000 2.546 ± 0.000 50 2.501 ± 0.008 2.557 ± 0.000 2.546 ± 0.000 2.546 ± 0.000 35 2.464 ± 0.038 1.974 ± 0.008 2.400 ± 0.015 2.331 ± 0.006 50 2.066 ± 0.012 2.468 ± 0.010 2.400 ± 0.007 35 346.149 ± 1.326 350.886 ± 0.269 345.972 ± 0.188 347.567 ± 0.132 50 350.753 ± 0.531 $345.176\pm0.125[h]$ 346.769 ± 0.050

(a) Deuterected chloroform and acatone was used as polar and cyclohexane and benzene used as non-polar solvents, (b) Using internl deuterium lock, (c) Using external deuterium lock, (d) Broad peak depend on the concentration, solvent and temperature, (e) Ref. 6 cw work on 40 MHz, (f) Ref 9. The solvent is CD₂CL₂ not specified exactly, (g) Ref. 8 The solvent is not specified.(h) Temperature was 70°, (i) Ref. 14, (j) Ref. 10 Chemical shifts of neat compound relative to CH₃NO₂ as internal standard, (k) Ref. 13 50% solution of HMDSZ in acetone-d₆, (l) Not obtained, due to instrument limitation. Note: Proton, Carbon-13 and Silicon-29 chemical shifts are relative to TMS as internal standard, while Nitrogen-14 chemical shifts are relative to CH₃NO₂ as internal standard.

It is seen from Table 1 that proton and carbon-13 chemical shifts are not temperature dependent. However, in different solvent these shifts shows solvent dependency. Proton chemical shifts is different in all solvents. However, carbon-13 chemical shifts remain same in cyclohexane and benzene. Silicon-29 chemical shifts are clearly dependent on solvent as well as on temperature. The d-orbitals of silicon are playing some role here. Nitrogen-14 chemical shifts are also solvent and temperature dependent. This may be due to some H-bonding effect of amino group with polar and non-polar solvents. The polar solvent increases H-bonding while non-polar reduces it.

A detailed study using various solvents, their concentration and at different temperatures is in progress.

Key words: NMR study, Hexamethyldisilazane, Chemical shifts.

References

- "Dictionary of Organic Compounds," J. Buckingham Exec. Editor, 3, 2929, H00759, (Chapman and Hall, N.Y., USA., 1982), 5th Edition.
- C.A. Bruynes and T.K. Jurriens, J.Org. Chem., 47, 3966 (1982).
- C.G. Pitt and M.S. Fowler, J. Am. Chem. Soc., 89, 6792 (1967).

- J. Plazant, F. Metras, A. Marchand and J. Valade., Bull. Soc. Chim. Fr., 1920 (1967).
- J. Talma's and P. Miklo's, Org. Mass Spectrum., 10, 859 (1975).
- E.A. Ebsworth and S.G. Frankiss, Trans. Faraday Soc., 63, 1574 (1967).
- 7 H.C. Levy II, J.Inorg. Nuclear Chem., 29, 1859 (1967).
- 8. H.C. Marsmann, Chem. Ztg., 96, 288 (1972).
- R.K. Harris and B.J. Kimber, J. Magn. Reson., 17, 174 (1975).
- J.P. Gouesnard and D. Dorie, Noveau J. Chim., 6, 143 (1982).
- H. Marsmann, NMR, Basic Principles and Progress-Oxygen-17 and Silicon-29. (Springer-Verlag, N.Y., 1981). Vol. 17, p. 65.
- G.J. Martin, M.L. Martin and J.P. Gousenard, "NMR Basic Principle and Progress - Nitrogen-15 NMR Spectroscopy", 18, 54 (1981).
- M. Witanoski, L. Stefaniak and G.A. Webb, Annual Reports on Spectroscopy - Nitrogen NMR Spectroscopy (Academic Press, N.Y. 1986) Vol 18, p 81.
- 14. H. Noth, W. Tinhofand and B. Wrackmeyer, Chem. Ber., **107**, 518 (1974).
- 15. E. Kupce, E. Liepins, O. Pudova and E. Lukevics., J. Chem. Soc. Chem. Commun., 581 (1984).

Ċ