Physical Sciences Section

Pakistan J. Sci. Ind. Res., Vol. 31, No. 9, September 1988

VIBRATIONAL SPECTRA OF SOME SUBSTITUTED TRIVINYLSILANES

M. Mazhar, R. Iqbal and T. Anjum

Department of Chemistry Quaid-i-Azam University, Islamabad

(Received February 5, 1988; revised September 18, 1988)

The preparation of trivinylethoxysilane (I), trivinylchlorosilane (II) and trivinyl (2-chloroethoxy) silane (III) and the assignments of various group frequencies of their vibrational spectra are reported. It has been suggested that twisting (γ_{as}) CH₂ mode of vibration can be used to differentiate ethoxy group from 2-chloroethoxy group in technical silicon products.

Key words: Vibrational, Spectra, Trivinylsilane.

INTRODUCTION

Vinylsilanes have acquired technical importance in a number of different ways e.g. reactive sites can be created by incorporating vinylsilane unitsjin the organic polymers where crosslinking can readily be initiated. The reactivity of alkenyl group on silicon atoms has long been utilized in silicon-rubber technology. The possibility of co-polymerization with unsaturated organic compounds has also aroused interest [1] at various times. The ability of hydrogen atom of silanes to add to the vinyl group of vinylsilanes promoted by platinum catalysts has acquired technological importance [2]. Vinyl and allylsilanes undergo further reaction well known to organic chemists [3].

Although a number of vinylsilanes are encountered in various communications [4-6] only a little information about the preparation of vinylsilane monomers of general formula $(CH_2 = CH)_3$ Si-x (where x=Cl, OC_2H_5 , OC_2H_4Cl) is available. Furthermore their vibrational spectra have not been studied systematically. In this article we report the preparation and some physical properties of some vinylsilanes monomers in glc pure form. Infrared, far infrared and laser Raman spectra of the silanes from these series have also been studied.

EXPERIMENTAL

Silanes were prepared [6,7] to glc grade of purity as follows.

Preparation of trivinylethoxysilane (I). A solution of vinyltriethoxysilane (47.5 g, 0.25 mole), in dry tetrahydrofuran (400 ml) was added in a three-necked oneliter flask fitted with a cold water condenser, an efficient stirrer and a dropping funnel. Dry nitrogen was flushed to remove air from the reaction vessel. Vinylmagnesium bromide (65.5 g, 0.50 mole) was added slowly from the dropping funnel with rapid stirring of the reaction mixture. The reaction mixture was refluxed for three hours. Tetrahydrofuran was then distilled off at atmospheric pressure and residue was subjected to vacuum distillation. Further fractionation of the distillate by Buchi distillation column at reflux ratio of 1:15 yielded few ml glc pure divinyldiethoxysilane and tetravinyl silane were obtained in addition to the main produce of trivinylethoxysilane, b.p. 132.5° , d₂₀ 0.8451 g/ml n_D²⁰ 1.4381, molar refraction theoretical: 48.190, practical 47.84.

Preparation of trivinylchlorosilane (II). A mixture of trinvinylethoxysilane/benzoylchloride (30 ml) and anhydrous aluminium chloride (0.385 g) was warmed to 40° with continueous stirring for six hours. Completion of the reaction was followed by glc. Crude trivinylchlorosilane (II) was separated from the reaction mixture by distillation under reduced pressure. The crude product was purified by fractionation through a Buchi column at reflux ratio of 1:10 b.p. 122° , d₂₀ 0.9506, n_D²⁰ 1.4616, molar refraction theoretical 42.30 practical; 41.87.

Preparation of trivinyl (2-chloroethoxy) silane (III). A mixture of trivinylethoxysilane (3.64 ml, 0.02 mole) and ethylenechlorohydrine (1.6 ml, 0.02 mole) was added in 50-ml round bottom flask fitted with a cold water condenser and placed on a magnetic stirrer/hotplate. The contents were stirred and refluxed with continueous disti-

llation of ethanol. The aliquot portions of the reaction mixture were withdrawn from time to time and analysed by glc to follow the reaction. The reaction was stopped when whole of the ethylenechlorohydrine was used up and distilled to 95% glc pure (III), b.p. 181° , n_D^{20} 1.4653.

Infrared spectra were taken in the range from 4000-400 cm⁻¹ using –KBr window on DIGLLAB FTS-14 interference type spectrophotometer. Far-infrared spectra were recorded on Beckman FS-720 far-infrared interferometer in the range from 40-400 cm⁻¹ using polyethlene window in liquid film or as *n*-hexane solution. Laser Raman spectra were measured in a special 0.5 ml liquid sample holder on Cary-82 Raman spectrometer with the excitation of the blue line of Argon laser under 100-150 mv reduced power.

RESULTS AND DISCUSSION

The assignments of the observed infrared and Raman frequencies of compounds (I)-(III) are given in Tables 1,2,

and 3 respectively. Our assignments for vinylgroup frequencies are in accordance with the reported [8-15] values for vinyl group in similar compounds.

The salient features of the spectrum of (I) is that ethyl group frequencies are intermixed with some of the vinyl group vibrations whereas in the spectrum of (II) all the characteristic vibrations of the vinvl group have been assigned conveniently. $\nu_{C=C}$ stretching vibrations of compounds (I), (II) and (III), have been found around $1594 \text{ cm}^{-1} - 1600 \text{ cm}^{-1}$ practically uneffected by the nature of the groups attached to silicon atom. Close examination of spectrum of (I) and (II) shows that the twisting (γ_{as}) CH₂ vinyl and rocking (β_{as}) CH₂ vibration are overlapped in the spectrum of ethoxy compound where as in 2-chloroethoxy derivative a separation of 30 cm⁻¹ is observed in these vibrations. This criteria can be used for identification and quantititative evaluation of chloroethoxy silanes from ethoxy silanes in technical silicon products. Further comparison of the spectra of (II) and (III) reveals

and the

Table 1. Assignment	of the	infrared and	Raman free	quencies of	trivin	ylethoxy	ysilane (1).
---------------------	--------	--------------	------------	-------------	--------	----------	-----------	---	----

Infrared	Raman	Assignments	Infrared	Raman	Assignments
3184 vw	3180 m,p	$2 x^{\nu}C=C$	1483 vw	1482 vw, dp	(Et)
3043 s	3060 s, dp	$\nu_{\rm as} CH_2$		1456 vw, dp	δ_{as} CH ₃ (Et)
3010 m	3013 w, p	$\nu_{\rm C=C}^{as} + \beta_{\rm s} CH_2$	1445 vw	1445 vw, dp	δCH_2 (Et)
2974 vs	2977 vs, p	ν CH, ν CH (Et)	1405 vs	1405 vs, p	$\beta_{\rm s} \rm CH_2$
2950 s	2950 m, p	^v CH ₂	1394 s		$\delta_{s}CH_{3}$ (Et)
2908 m	2929 vs, p	$\nu^{\rm o}$	1365 sh		3
2900 m		ν CH, ν CH (Et)	1295 vw		γ_{s} CH ₂ (Et) wagging
2876 m	2880 p	ν^{3} C=C + 2 δ_{2} CH ₃	1273 w	1274 vs, p	βCH
	2805	as	1164 s		γ_{2s} CH ₂ (Et)
2770 vw	2767 vw, p	$2\delta_{as}CH_{3}$	1106 vs	1103 w,p	ν_{as}^{as} SiOC coupled with CC of Etgr.
2730 vw	2729 w, sh,p	(Et)	1084 vs	1086 w,p	
2688 vw					
2630 vw			1007 vs	1008 w,dp	$\gamma_{as}CH_2, \beta_{as}CH_2$
2435 vw					ub ub
2410 vw			962 vs	964 vw, dp	$\gamma_{s}CH_{2},\delta CH_{3}$ (Et)
2350 vw					5
2270 vw		$\gamma_{as}CH_2 + \beta CH$	950 sh	950 sh	
2180 vw		45	769 s	770 w,p	^v Si-OC
2142 vw				808 vw	3
2003 vw		$2x\beta_{s}CH\lambda_{2}$	732	740 vw, dp	ν_{as} Si-C ₃
		$2x\gamma_{2s}CH_{2}$	724 s, sh		45
1924 w		$2x\gamma_{e}CH_{2}$	602 vw	599 s.p.	
1865			554 m	555 sh,p	${}^{\nu}_{s}SiC_3$ (Conformation)

(Continued)

Vibrational spectra of some substituted trivinylsilanes

The Rock		70	67	τ Si C=C	
		115		δSi-OC	
			174 vw,dp		
		225 w,b		δSiC ₃	
		278 m	278 vw		
		317 w,b	317 m,p	δSi-CC	
1594 s 1594 vs, p	ν C=C		390 w		
1714 vw		542 m,sh,	545 sh,dp	γ_{CH}	
(Table 1, continued)					

w, m, s = weak, medium strong, v = very, p = polarized, dp = depolarized, sh = shoulder. Approximate description of normal modes and their notation is as follows; C=C stretching $^{\nu}$ C=C, CH stretching $^{\nu}$ CH, asymetric stretching $^{\nu}$ as, symmetric stretching $^{\nu}$ s, CH₂ scissoring β_s , CH₂ rocking β_{as} CH₂, in plane deformation β , out of plane deformation γ , secletal deforamtion δ , CH₂ twisting γ_{as} , CH₂ wagging γs , asymmetric δ_{as} , symmetric deformation δ_s , CH₂,CH₃, rocking mode δ (CH₃).

Table 2. Assignment of the infrared and raman frequencies for trivinylchlorosilane (II)

Infrared	SHC 11	Raman	Assignments	Infrared	Raman	413 W.D. 384 VW	Assignments
3184 w 3059 3016 s 2980 s 2950 s 2850 vw 2800	31 ⁰⁰	3184 w,p 3064 m,dp 3016 w,p 2985 v,s,p 2958 m,p 2846 w	$2x {}^{\nu}C=C$ ${}^{\nu}_{as}CH_{2}$ ${}^{\nu}C=C + \beta_{s}CH_{2}$ ${}^{\nu}CH$ ${}^{\nu}CH_{2}$ ${}^{\nu}C=C + 1270$	802 vw 734 vs 648 vs 625 sh 580 m,sh 550 s	580 dp 553 dp	193 (M. 1997) 277 266 (M. 1997) 1947 (M. 19 1947 (M. 19	$\nu_{asSiC_{3}}$ $\nu_{sSiC_{3}}$ Impurity γ_{CH}
2672 vw 2340			$\beta_{\rm s} {\rm CH}_2 + \beta {\rm CH}$	360	338 p		δSiCC
2268 w 2150 vw 1998 w			$\gamma_{as}CH_2 + \beta CH$ $\beta CH + \nu_{as}SiC$	315 w 195 m 120 vw	315 w 195 w,dp 150 p		$\delta_{as}SiC_{3}$ $\delta_{s}SiC_{3}$
1932 m 1778 w	ky, Col		$2 \ge \gamma_{s}CH_{2}$	70 vw	igh fraquency		$\tau \hat{S}iC=C$
1597 vs 1453 w		1598 vs,p	^ν C=C				A two teape was recorded to of and writich (V i for
1470 vs 1316 m 1270 w		1406 vs,p 1355 w,p 1270 vs,p	β _s CH ₂ 1003 + 315 βCH				
1205 w 1174 w 1064 s		1210 vw,p	Impurity				
1003 vs 966 vs 873 vw 825 vw	7A, 11 Opt. Sp Month	1007 vw	$\gamma_{as}CH_{2},\beta_{as}CH_{2}$ (overla $\gamma_{s}CH_{2}$	apped)	n, Belg Par Clejang Cl Legang Cle Legang C	Omu Ann A Si Ann Si Ann Ann Ann	 K. On and K. On and K. D. C.H. Hipping. J. D.L. Baslay. Metabox Ind J.

See footnote of Table 1 for elaboration of various symbols.

that γ as Si-OC modes in (III) are higher by 15-20 cm⁻¹ than in the case of (II). This can be explained that Si-OCCCI skeletal stretching vibrations, mainly C-Cl stretching, is strongly mixed with the Si-OC mode whereas in the

case of (I), OC_2H_5 group frequencies do not interfere with Si-OC mode. For CH_2 stretching modes of OC_2H_4Cl in (III) two bands around 2960 cm⁻¹ were assigned. These bands are at lower frequency range than expected for

Infrared	Raman	Assig	gnments	Infrared	Raman	Assignments	
3061 m	3062 m,dp	^v asC	H ₂	1046 vs 1014 s	1053 wd	$\nu_{as}^{\nu}CH_{2}$ $\beta_{as}CH_{2}$	
2960 vs	2958 vs p	$\nu_{\rm CH}$	^{<i>v</i>} CH ₃ EtCl			45	
2910 sh		ν_{s} CI	\mathbf{I}_2	9655	973 vw dp	^v CH ₂	
2880 s	2872 vs,p	^v _s CH	I ₂ EtCl	839 s		$\beta_{as}CH_2$ EtCl	
2850 sh	2842 s,p	^v _s CH	I2 EtCl	773 vs		^v SiOC	
1600	1602 m,p.	$\nu C = C$				ed, sh = shoulder Approxim	
1478 m	1484 vw), control on a minimum and	
1473 m	1463 w,dp	β _s CH	l ₂ (EtCl)	720		$\nu_{as}SiC_3$	
1148 m	1434 w	-		668		Cable T.	
1427				666 m	670 m, dp	^ν C-C1	
1408	1413 wp	β _s CH	1 ₂	624	637 mp	^ν sSiC	
1387 m	1384 vw	γ _s CH	I_2 (EtCl)	548		$\gamma_{\rm CH}$	
1307 vs	1303 vw 1293 w,wdp	βCH		310 s	265 191	βCCCl EtCl	833. 201
1262 m	1277 1260 mu da		I (E+C1)	202 III	203 VW	0 USIC	
1203 m	1200 vw dp	γ_{s} CF	I_2 (EICI)				
1127 sh 1100 vs	1197 vw dp 1134 w	$v_{as}Si$	OC C (EtCl)	nam ti Stilling			

Table 3. Assignment of infrared frequencies of trivinyl chloroethoxy silane (III)

See footnote of Table 1 for elaboration of various symbols.

 $-OC_2H_4Cl$ group. These bands are effected by Fermi resonances with $2\delta CH_2$ levels. The C-H out of plane (γCH) vibration have been assigned at 542 cm⁻¹. The depolarized Raman bands exhibit minima at this frequency. Our assignment of this vibration at high frequency is contrary to that of Kalasinsky [16].

A two temperature (-70°) I.R. spectrum of (III) was recorded to observe the difference of eclipsed (IV) and gauch (V) forms. It was found none upto -70° which could be attributed to an increasing preference for a particular conformer, probably due to conformational complexity arising from the rotation about the C-Si, Si-O and O-C bonds.

REFERENCES

- 1. K. Ott and K. Damm, Belg. Pat. 627282 (1962).
- G.H. Wagner, Union Carbide U.S. Pat. 2637738.
 D.L. Bailey, A.N. Pines M.L. Dunham and D.B.
- McIntire, Ind. Engg. Chem., 45, 367 (1953)
- 4. B.P. 795772 (1958).
- 5. R. Negel and H. Post, J. Org. Chem., 17, 1379 (1952).
- 6. S.D. Rosenberg, J.J. Walburn, T.D. Stankovich, A.

Balint and H.E. Ramsden, J. Org. Chem., 22, 1200 (1975).

- 7. M. Cohen and J.K. Ladd, J. Am. Soc. 75, 988 (1953).
- Y. Knizek, M. Horak and V. Chalovsky, Collec. Czech. Chem. Comm. 28, 3079 (1963).
- 9. L.B. Hristenko, E. Chermisher, A.N. Kursky and A. Yu. Pentin, Zh. Prikt. Spektro, 26, 889 (1977).
- G. Masetti and G. Zerbi, Spektro-Chim. Acta., 26A 1891 (1970).
- N.A. Chaumaevsky, Vibrational Spectra of Organometallic Compounds of Group IV B and V B, (Nauk, Moscow, 1971), p. 70.

it

- L.V. Hrisktenko and A. Yu. Pentin, Opt. Spektro, 31, 825 (1971).
- 13. G. Davidson, Spectrochim. Acta, 27A, 1161 (1971).
- V.I. Fedoseeva and A. Yu. Pentin, Opt. Spectro., 35, 76 (1973).
- 15. L.V. Hristenko and A. Yu Pentin, Vestink Moscow Univ. Khim, 1, 16 (1976).
- 16. V.F. Kalasinsky, S.E. Rodgers and J.A.S. Smith, Spectro. Chimica Acta, 41A, 155 (1958).