Pakistan J. Sci Ind. Res., Vol. 31, No. 7, July 1988

AMINOAZOLES IN HETEROCYCLIC SYNTHESIS Synthesis of some pyrrolo Heterocycles⁺

M. A. Sofan, H.A. Etman and M.A. Metwally

Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt

(Received September 17, 1987; revised July 20, 1988)

Condensation of 4-carbomethoxy-2,3-dioxopyrrolidines [1] with aminoazoles gave the linearly fused pyrroloheterocycles [2-6]. The structure of the hitherto unknown ring systems have been established by analytical and spectral data.

Key words: Aminoazoles, Pyrroloheterocycles.

INTRODUCTION

Cyclic β -keto ester reported to react with aminoazoles to give a linearly fused heterocycles [1-3]. A survey of the literature showed that condensed heterocycles having a fused pyrrolo nucleus have attracted little attention. Interest in the synthesis of fused heterocycles of potential biological activity [2] has prompted us to use 4carbomethoxy-2,3-dioxopyrrolidines la & b [6] as heterocyclic β -keto esters. It was found that 1 on reaction with 2-amino-5ethylthiadiazole yielded pyrrolopyrimidones 2, as inferred from their IR spectra. The condensation of 2-amino-5ethylthiadiazole with ethyl cyclohexanon-2-carboxylates as previously noted by us [2] and supported the formation of 2.

Compound 1 condensed with 3-amino-1,2,4-triazole, 5-aminotetrazole, 2-aminobenzimidazole and 3-amino-1-phenyl-2-pyrazolin-5-one to give 3,4,5- and 6 rather than

⁺Part 6 in the series of heterocyclic compounds with bridgehead nitrogen, for part 5 see, E.M. Kandeel and M.A. Metwally, Pakistan J. Sci. Ind. Res., 1988, in press.

3', 4', 5' and 6' depending on their correct analytical data their IR spectra and our previous work [3-5], (cf. Table 1)

EXPERIMENTAL

The melting points are uncorrected. The IR spectra were determined by KBr pellets on a Pye Unicam SP 2000 spectrophotometer.

Condensation of 1 with 2-amino-5-ethyl-1,3,4-thiadiazole: Formation of (2a&b). A mixture of 1 (1 x 10^{-3} mol) and 2-amino-5-ethyl-1,3,4-thiadiazole (1 x 10^{-3} mol) in dry xylene was refluxed for 4 hrs. After cooling a solid material was precipitated, which when crystallized with acetone gave compounds (2a&b) (Table 1).

Reaction of 1 with 3-amino-1,2,4-triazole: Formation of (3a&b). A solution of 1 (1 x 10⁻⁴ mol) and 3-amino-1,2,

4-triazole (1 x 10^{-4} mol) in absolute ethanol (50 ml) containing few drops of piperidine was refluxed for 4 hrs. The reaction mixture was left to stand over-night. The solid product obtained was filtered off and recrystallized from ethanol to give compounds (3a&b) (Table 1).

Interaction of 1 with 5-aminotetrazole monohydrate: Formation of (4a&b). In 50 ml NaOMe 0.015 mol of Nametal in 50 ml of dry methanol containing 1×10^{-3} mol of 1 was added (0.01 mol) to 5-aminotetrazole monohydrate. The reaction mixture was refluxed for 6 hrs., diluted with ice-cold water and acidified with dilute acetic acid (pH \simeq 4). The solid product that separated was crystallized with ethanol to give compounds (4a&b) (Table 1).

Compd. No.	Col- M.P. our ^o C	Yield %	IR cm ⁻¹	Mol. F (M. Wt.)	Analysis	
					Found (%) C	Calcd. (%) H
2a	White 180	60	1690, 1680 (C=O) & 1610 (C=N)	C ₁₅ H ₁₂ N ₄ SO ₂ (312.34)	57.42 57.67	3.91 3.87
2b	White 250	65	1695, 1675 (C=O) & 1605 (C=N)	C ₁₆ H ₁₄ N ₄ SO ₄ (326.36)	58.66 58.87	4.41 4.32
3a	White 179	70	3380 (OH) 1710 (C=O) & 1600 (C=N)	C ₁₃ H ₉ N ₅ O ₂ (267.24)	58.35 58.42	3.59 3.39
3b	White ≥ 250	60	3405 (OH) 1695 (C=O) & 1610 (C=N)	C ₁₄ H ₁₁ N ₅ O ₂ (281.27)	60.01 59.77	4.21 3.94
4a	Brown > 250	55	3390 (OH) 1690 (C=O) & 1605 (C=N)	C ₁₂ H ₈ N ₆ O ₂ (268.23)	53.91 53.72	2.95 3.00
4b	White 204	62	3395 (OH) 1695 (C=O) & 1615 (C=N)	C ₁₃ H ₁₀ N ₆ O ₂ (282.26)	55.41 55.31	3.81 3.57
5a	White >250	50	3160 (NH) 1700 (C=O) & 1600 (C=N)	$\begin{array}{c} {\rm C}_{18}{\rm H}_{12}{\rm N}_4^4{\rm O}_2\\ (316.31)\end{array}$	68.11 68.34	3.93 3.82
5b	Light 225 orange	64	3100 (NH) 1695 (C=O) & 1610 (C=N)	C ₁₉ H ₁₄ N ₄ O ₂ (330.33)	69.21 69.07	3.93 4.27
6	Pale 186 yellow	53	3360 (OH), 1700, 1680 (C=O) & 1605 (C=N)	C ₂₀ H ₁₄ N ₄ O ₃ (358.34)	66.61 67.03	4.61 3.93

Table 1. Characterization data of compounds (2-6).

Condensation of 1 with 2-aminobenzimidazole: Formation of (5a&b). These compounds were synthesized from 1 and 2-aminobenzimidazole in the same manner as (3a&b)and crystallized with DMF (Table 1).

Reaction of 1 with 3-amino-1-phenyl-2-pyrazolin-5one: Formation of 6b. This compound was synthesized from 1 and 3-amino-1-phenyl-2-pyrazolin-5-one as (4a&b) and crystallized with ethanol (Table 1).

REFERENCES

H. Antaki, V. Petrow, J. Chem. Soc., 551 (1951).
M.H. Elnagdi, F.M. Abdel-Galil, B.Y. Raid and G.H.

Elgemeie, Heterocycles, 20(12), 2445-55 (1983).

- 3. M.A. Metwally, M.S. El-Hussiny, F.Z. El-Ablak and A.M. Khalil, (1988). Pharmazie, in press.
- 4. M.A. Metwally, M.Y. Yousif, A.M. Ismaiel and H.A. Etman, Heterocycles, 23, 2251 (1985).
- 5. M.A. Metwally and H.A. Etman, Z. Naturforsch., 41b, 486 (1986).
- P.L. Southwick, R.T. Crouch, J. Amer. Chem. Soc., 75, 3413 (1953).