HOME COMPUTER IN MOLECULAR ORBITAL CALCULATIONS Part I. The Huckel Method

M. Mohammad A.Y. Khan and Romana Qureshi
Electrochemistry Group, Quaid-i-Azam University, Islamabad

(Received September 23, 1986; revised March 16, 1987)
Computer Programs in BASIC language for molecular orbital calculations have been developed for home computer (10 K memory). The M.O. Program can be used for research as well as teaching purposes. The programs are simple and tractable and can be used by nonprofessionals with ease. The program has been tested and found working with less than 15 seconds' time taken for allyl system.

Key words: Home computer; M.O. program Huckel Method; Basic program.

INTRODUCTION

The importance of M.O. calculations and utilization of various parameters (orbital energies, electron densities etc.) in teaching and research is well established. With the advent of computers, such calculations have become a lot easier. However, even with the terminal facilities available, the big computers are out of reach for many. Besides, because of time sharing, running M.O. programs for teaching purposes could be quite expensive. Also some of the programs written by professional programmers, though available in the library, cannot be easily modified to suit our (and the computer's) requirements. If these M.O. calculations can be carried out on small inexpensive and easily accessible computers, many of the above problems can be solved.

With the advent of Home Computers which are now easily accessible even to high schools (and to individuals), it is lot easier and more convenient to handle M.O. calculations by these computers. Besides, because of BASIC Language, the user can understand more easily about the techniques of M.O. calculations. It is more easily traceable to the user.

A computer program in BASIC language has been developed to carry out Huckel M.O. calculation. The program has been tested on a Home Computer with 10 K memory.

Molecular orbital theory. Here only a summary of the theory is given. For details one is referred to the literature [1].

Each molecular orbital can be expressed as a linear combination of n atomic orbitals (where n is the number of basis orbitals):

$$
\begin{equation*}
\Psi_{\mathrm{j}}=\sum_{\mathrm{i}}^{\mathrm{n}} \mathrm{C}_{\mathrm{ji}} \phi_{\mathrm{i}} \tag{1}
\end{equation*}
$$

$C_{j r}=$ coefficient of the $r^{\text {th }}$ atomic orbital in $j^{\text {th }}$ M.O. $\phi_{i}=$ A.O. for the $r^{\text {th }}$ atom

The Huckel Molecular Orbital method is [2] the simplest method for calculating the energies and coefficients of the molecular orbitals.

Using the variational method, a set of linear equations is obtained:

$$
\begin{equation*}
\Sigma \mathrm{C}_{\mathrm{j}}\left(\mathrm{H}_{\mathrm{ij}}-\mathrm{S}_{\mathrm{ij}} \mathrm{E}\right)=\mathrm{O} ; \mathrm{i}=1,2, \ldots \mathrm{n} \tag{2}
\end{equation*}
$$

Where the quantities

$$
\begin{align*}
& \mathrm{H}_{\mathrm{ij}}=\mathrm{H}_{\mathrm{ji}}=\int \phi_{\mathrm{i}}^{*} \mathrm{H} \phi_{\mathrm{j}} \mathrm{~d} \tau \tag{3}\\
& \mathrm{~S}_{\mathrm{ij}}=\int \phi_{\mathrm{i}}^{*} \phi_{\mathrm{j}} \mathrm{~d} \tau \tag{4}
\end{align*}
$$

are numbers which can be computed from the starting ϕ_{i} and known H. In the matrix form this set of n equations can be represented as [3].

$$
\begin{equation*}
\mathrm{HC}=\mathrm{SCE} \tag{5}
\end{equation*}
$$

$$
\mathrm{C}=\text { matrix of coefficients (or matrix of eigenvectors). }
$$ Each column of the matrix C refers to different M.O. elements; S_{ij} of the matrix S can be represented as

$$
\mathrm{S}_{\mathrm{ij}}=\int \phi_{\mathrm{i}}^{*} \phi_{\mathrm{j}} \mathrm{~d} \nu
$$

Under the assumption that the basis function is orthonormal and matrix S becomes equal to the identity matrix and we are left with the equations $\mathrm{C}^{+} \mathrm{HC}=\mathrm{CE}$. Also

Matrix elements of H are known then C and E can be calculated. E in this case is a diagnonal matrix.

The diagonal elements of E correspond to the eigenvalues or energies of the M.O.'s.

The problem is now that given a matrix H , to find unitary matrix C such that $\mathrm{C}^{+} \mathrm{HC}$ is diagonal. Details of matrix diagonalization can be obtained from ref. 3. and ref. 4.

The next problem is the evaluation of the matrix elements $\mathrm{H}_{\mathrm{ij}} \cdot \mathrm{H}_{\mathrm{ii}}$ represents the energy of an electron in the $\mathrm{i}^{\text {th }}$ atomic orbital. This integral known as coulumb integral is denoted by the symbol $\alpha\left(=\int \phi_{\mathrm{i}} \mathrm{H} \phi_{\mathrm{i}} \mathrm{d} \nu\right)$ where ϕ is the $2 p_{z_{\mathrm{z}}}$ A.O. of a carbon atom [2]. H_{ij} represents the energy of interaction of orbitals and as a simplification if atoms i and j are bonded then $H_{i j}=\beta$, otherwise (if i and j are not bonded) $\mathrm{H}_{\mathrm{ij}}=\mathrm{O}$. This is known as the resonance integral. This is the case when we are considering simple conjugated or aromatic hydrocarbons. However in a more general form the matrix elements of the Hamiltonian can be represented as $\mathrm{H}_{\mathrm{ii}}=\alpha+\mathrm{h}_{\mathrm{x}} \beta$ and for neighbouring atoms $\mathrm{H}_{\mathrm{ij}}=\beta=\mathrm{k}_{\mathrm{c}} \beta_{\mathrm{o}}$ where β_{0} is taken to be a unit of energy.

All roots are computed relative to α, which is usually taken for convenience to be zero. According to convention $h_{x}=0$ if the $\mathrm{i}^{\text {th }}$ A.O. is the $2 P_{z}$ A.O. However if instead of carbon we have some other heteroatom X as part of the system, then h_{x} may have a positive or negative value depending upon the electronegativity of the heteroatom relative to the carbon atom.

For a $\mathrm{C}-\mathrm{X}$ bond the value of the parameter $\mathrm{k}_{\mathrm{C}-\mathrm{X}}$ is not equal to unity [5]. Once the energies and co-efficients of the molecular orbitals are calculated then the electrons are assigned to the M.O.'s according to Pauli's exclusion principle.

According to Coulsion the partial mobile bond order of the r -s bond in the $\mathrm{j}^{\text {th }}$ M.O. is defined as [2].

$$
\begin{align*}
& \mathrm{P}_{\mathrm{rs}}^{\mathrm{j}}=\mathrm{C}_{\mathrm{jr}} \mathrm{C}_{\mathrm{js}} \tag{6}\\
& \mathrm{P}_{\mathrm{rs}}=\Sigma \mathrm{P}_{\mathrm{rs}}^{\mathrm{j}}=\Sigma \mathrm{n}_{\mathrm{j}} \mathrm{C}_{\mathrm{jr}} \mathrm{C}_{\mathrm{jr}} \tag{7}
\end{align*}
$$

Bond orders may be associated with the binding power of a bond. The electron density at an atom, q_{r}, is the sum of electron density contributed by each electron in each M.O.

$$
\begin{equation*}
q_{r}=\Sigma C_{j r}^{2} \tag{8}
\end{equation*}
$$

C_{jr} is the coefficient of atom r in the $\mathrm{j}^{\text {th }}$ M.O., which is ${ }_{\mathrm{occupied}}^{\mathrm{j}}$ by n_{j} electrons. The sum is taken over all the M.O.s.

Huckel calculations are semiempiricial in nature and a number of approximations have been introduced. Some of the approximations can be reduced by further techniques within the framework of H.M.O. method; w-technique $[2,6]$ is one of these techniques.

Computational techniques. Molecular Orbital Calcu: lations have been carried out on a 10 K Home Computer Sharp (PC-1500) using the simple Huckel Molecular Orbital method. The method is based upon matrix diagonalization in BASIC language and is designed to provide processing for one molecule with one electronic configuration at a time.

A BASIC program for solving Huckel-electron problem is written in the form of subprograms, each of which performs a specific part of the complete calculation.

It consists of a Main Control Program which controls the sequence of operation, and several subroutines. These subroutines being INPUT, DIAGONALIZATION, ORDER, BOND ORDER, OUTPUT, PRINTOUT INPUT DATA, PRINTOUT RESULTS, OUTPUT.

The functions of the above mentioned SUBROUTINES are generally known and these do not have to be elaborated briefly:

INPUT Subroutine reads the number of conjugated atoms, the Huckel matrix and the number of electrons. It reads only the upper semi matrix (of the Huckel matrix) and brings down the upper semi matrix to the lower semimatrix.

The DIAGONALIZATION subroutine diagonalizes the matrix by the Jacobi method.

The subroutine ORDER puts the eigen-values and eigenvectors in a sequence from the lowest to the highest. Negative eigen-values correspond to bonding energy levels. The nond order subroutine calculate the charge densities and bond order (eqns 7 and 8). The function of other subroutines are obvious.

There are two points worth mentioning, viz. (i) Form of the Input matrix and (ii) Timing.
(i) Form of the input matrix. The input matrix H (I, J) contains O'S and 1'S for straight/conjugated aromatic hydrocarbon. For hydrocarbon, the diagonal elements H (I, I) are set equal to zero, off diagonal elements are 1'S for neighboring atoms and O's for non-neighbouring.

In heteroatomic system not all diagonal elements are O . If the heteroatom is at the Ith position, the $\mathrm{H}(\mathrm{I}, \mathrm{I})$ is equal to hx . Also $\mathrm{H}(\mathrm{I}, \mathrm{J})$ is equal to $\mathrm{k}_{\mathrm{c}-\mathrm{x}}$ when J is the neighbour of the heteroatom.

A point to remember is that as the energy levels are arranged in ascending order (from -ve to +ve values) electron should be filled accordingly.

As an example consider the case of pyridine. Questions will appear on the screen for the number of atoms, $\mathrm{H}(\mathrm{I}, \mathrm{J})$ matrix and the number of electrons. These are to be "Entered".

$\mathrm{H}(1,1)=? 0.5$	$\mathrm{H}(2,2)=? 0$
$\mathrm{H}(1,2)=? 0.8$	$\mathrm{H}(2,3)=? 1$
$\mathrm{H}(1,3)=? 0$	$\mathrm{H}(2,4)=? 0$
$\mathrm{H}(1,4)=? 0$	$\mathrm{H}(2,5)=? 0$
$\mathrm{H}(1,5)=? 0$	
$\mathrm{H}(1,6)=? 0.8$	$\mathrm{H}(3,3)=? 0$
	$\mathrm{H}(3,4)=? 1$
$\mathrm{NE}(1)=? 2$	$\mathrm{H}(3,5)=? 0$
$\mathrm{NE}(2)=? 2$	$\mathrm{H}(3,6)=? 0$
$\mathrm{NE}(3)=? 2$	
$\mathrm{NE}(4)=? 0$	
$\mathrm{NE}(5)=? 0$	
$\mathrm{NE}(6)=? 0$	

(ii) Timing.

The time taken by the computer to run the above mentioned programs for allyl radical (or cation) and benzene molecule (or ion) is given below

Alkyl radical	18 secs
Benzene	100 secs

on larger computer, e.g. APPLE IIC, considerable less time is required for computation.

In case of the Jacobi diagonalization time taken is proportional to N_{3} (Where $\mathrm{N}=\mathrm{No}$. of atoms in a molecule)

$$
\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{N}_{1}^{3}}{\mathrm{~N}_{2}^{3}}
$$

The above mentioned data are found to be in rough agreement with this rule.

Printouts: Input Data and Results (H.M.O.)

H.M.O CALCULATIONS

```
ALLYL RADICAL
INPUT DATA
\(H(1,1)=0\)
\(H(1,2)=1\)
\(H(1,3)=0\)
\(H(2,2)=0\)
```

EIGENVALUES
$\mathrm{E}(1)=-1.414213563$
$E(2)=-2.850934661$
E-12
$\mathrm{E}(3)=1.414213563$
$\mathrm{H}(2,3)=-1$
$\mathrm{H}(3,3)=0$

NE (1) = NO. OF ELECTO
NS IN THE ITH M.O
NE (1) $=2$
NE (2) $=1$
NE (3) $=0$
RESULTS

CHARGE DENSITIES
Q (1) $=1$
$Q(2)=1$
$Q(3)=9.999999998$
E-01

EIGENVECTORS
$\mathrm{U}(1,1)=5.000000$
001E-01
$\mathrm{U}(1,2)=-7.071067 \quad$ BONDORDERS
811E-01
$\mathrm{U}(1,3)=-5.000000$
001E-01
$\mathrm{U}(2,1)=7.071067$
812E--01
$\mathrm{U}(2,2)=2.099388$
$572 \mathrm{E}-10$.
$U(2,3)=7.071067$
812E-01
$U(3,1)=4.999999$
999E-01
$\mathrm{U}(3,2)=7.071067$

812E-01
$U(3,3)=-0.5$
$P(1,1)=1$
$P(1,2)=7.071067$
812E-01
$P(1,3)=5.2 E-11$
$P(2,1)=0$
$P(2,2)=1$
$P(2,3)=7.071067$
812E-01
$P(3,1)=0$
$P(3,2)=0$
$P(3,3)=9.999999$
998E-01

1. H.M.O. Programme For Sharp PC -1500 Home Computer (10 K)
H.M.O.

10: Print "H.M.O. Calculations"
15: $\mathrm{RC}=1$
20: GOSUB 80
25: GOSUB 230
30: GOSUB 600
35: GOSUB 700
40: GOSUB 800
45: END

Bondorders Subroutine
700: Rem Subroutine Bondorders
705: FOR R = I TO N
710: FOR $S=R$ TO N
715: $\mathrm{SM}=0$
720: FOR J = I TO N
725: $\mathrm{SM}=\mathrm{SM} \div \mathrm{NE}(\mathrm{J}) * \mathrm{U}(\mathrm{R}, \mathrm{J}) * \mathrm{U}(\mathrm{S}, \mathrm{J})$
730: NEXT J
740: $\mathrm{P}(\mathrm{R}, \mathrm{S})=\mathrm{SM}$
745: NEXT S
750: NEXT R
755: RETURN
Input Subroutine
80: REM "INPUT SUB ROUTINE"
85: INPUT "NAME?"; N\$
90: INPUT "NO OF AT OMS = ?"; N
95: DIM H (N, N): DIM HD (N): DIM NE (N): DIM U
(N, N): DIM UT (N): DIM P (N, N)
100: WAIT 0
105: FOR I = I TO N

110: FOR J = I TO N
115: CLS: PRINT "H ("; I; ", "; J;") =";
120: INPUT H (I, J)
125: $\mathrm{H}(\mathrm{J}, \mathrm{I})=\mathrm{H}(\mathrm{I}, \mathrm{J})$
130: NEXT J
135: NEXT I
140: FOR I = I TO N
145: CLS: PRINT "NE ("; I;") =";
150: INPUT NE (I)
155: NEXT I
160: WAIT 100: CLS: PRINT "CHECK T HE INPUT H (I, J)"
165: FOR I = I TO N
170: FOR J = I TO N
175: CLS: WAIT 0: PRINT "H ("; I;" "; J; ") = "; H (I, J)
180: CURSOR 20: INPUT H (I, J)
185: $\mathrm{H}(\mathrm{I}, \mathrm{J})=-\mathrm{H}(\mathrm{I}, \mathrm{J})$
190: H (J, I) $=\mathrm{H}(\mathrm{I}, \mathrm{J})$
195: $\mathrm{HD}(\mathrm{I})=\mathrm{H}(\mathrm{I}, \mathrm{I})$
200: NEXT J
205: NEXT I
210: WAIT
215: CLS: INPUT "PR INTOUT INPUT D ATA REOD?"; U\$
220: IF U\$ = "YES" THEN GOSUB 4000
225: RETURN

Diagonalization Subroutine
230: REM DIAGONALIZATION
235: REM SUBROUTINE
240: FOR J = ITO N
245: FOR I = ITO N
250: $\mathrm{U}(\mathrm{I}, \mathrm{J})=0$
255: $\mathrm{U}(\mathrm{I}, \mathrm{I})=1$
260: NEXT I
265: NEXT J
270: $\mathrm{EP}=\mathrm{IE}-16$
275: MX = 0
280: FOR I = 2 TO N
285: FOR J = I TO ($1-1$)
298: H (I, I) @ HD (I)
295: H (J, J) = HD (J)
300: SQ = H (I, J) 2
310: IF SQ > MXTHEN LET MX = SQ
315: IF SQ < = EPTHEN GOTO 515
320: $\mathrm{D}=\mathrm{HD}(\mathrm{I})-\mathrm{HD}(\mathrm{J})$
325: IF D $>=0$ THEN GOTO 340
330: $\mathrm{SN}=-2: \mathrm{D}=-\mathrm{D}$
335: GOTO 345
340: $\mathrm{SN}=2$

345: $T D=\left(D+\sqrt{ }\left(\left(D^{*} D\right)+\left(4^{*} S Q\right)\right)\right)$
350: $\mathrm{TN}=(\mathrm{SN} * \mathrm{H}(\mathrm{I}, \mathrm{J})) / \mathrm{TD}$
355: $\mathrm{C}=\mathrm{I} /(\sqrt{ }(\mathrm{I} \div(\mathrm{TN} * \mathrm{~T} \mathrm{~N})))$
380: $\mathrm{S}=\mathrm{C}$ * TN
370: FOR K = I TO N
380: XJ = C * U IK, J) - S * U (K, I)
385: $\mathrm{U}(\mathrm{K}, \mathrm{I})=\mathrm{S}^{*} \mathrm{U}(\mathrm{K}, \mathrm{J}) \div \mathrm{C}^{*} \mathrm{U}(\mathrm{K}, \mathrm{I})$
390: U(K, J) = XJ
395: IF K = J THEN GOTO 485
400: IF K > J THEN GOTO 435
410: $\mathrm{XT}=\mathrm{C} * \mathrm{H}(\mathrm{J}, \mathrm{K})-\mathrm{S} * \mathrm{H}(\mathrm{I}, \mathrm{K})$
420: $\mathrm{H}(\mathrm{I}, \mathrm{K})=\mathrm{S} * \mathrm{H}(\mathrm{J}, \mathrm{K})+\mathrm{C} * \mathrm{H}(\mathrm{J}, \mathrm{K})$
425: $\mathrm{H}(\mathrm{J}, \mathrm{K})=\mathrm{XJ}$
430: GOTO 485
435: IF K = I THEN GOTO 485
440: IF K > I THEN GOTO 470
450: $\mathrm{XJ}=\mathrm{C} * \mathrm{H}(\mathrm{K}, \mathrm{J})-\mathrm{S}$ * $\mathrm{H}(\mathrm{I}, \mathrm{K})$
455: $\mathrm{H}(\mathrm{I}, \mathrm{K})=\mathrm{S}^{*} \mathrm{H}(\mathrm{K}, \mathrm{J})+\mathrm{C} * \mathrm{H}(\mathrm{I}, \mathrm{K})$
460: $\mathrm{H}(\mathrm{K}, \mathrm{J})=\mathrm{XJ}$
465: GOTO 485
470: $\mathrm{XJ}=\mathrm{C}$ * $\mathrm{H}(\mathrm{K}, \mathrm{J})-\mathrm{S}^{*} \mathrm{H}(\mathrm{K}, \mathrm{J})$
475: $\mathrm{H}(\mathrm{K}, \mathrm{I})=\mathrm{S}$ * $\mathrm{H}(\mathrm{K}, \mathrm{J})+\mathrm{C}$ * $\mathrm{K}(\mathrm{K}, \mathrm{I})$
480: H (K, J) = XJ
495: NEXT K
490: $\mathrm{HD}(\mathrm{J})=(\mathrm{S} * \mathrm{~S}$ * H (J, I)) $+(\mathrm{S} * \mathrm{~S}$ * H (J, J)) +
(2 * S * S * H (I, J))
500: $\mathrm{HD}(\mathrm{J})=(\mathrm{S} * \mathrm{~S} * \mathrm{H}(\mathrm{J}, \mathrm{J}))+(\mathrm{S} * \mathrm{~S} * \mathrm{H}(\mathrm{J}, \mathrm{I}))-$
(2*S * S * H (J, J))
510: $\mathrm{H}(\mathrm{J}, \mathrm{J})=0$
515: NEXT J
520: NEXT I
525: IF MX > EP THEN GOTO 275
530: RETURN
540: END

Output Sueroutines
800: REM SUBROUTINE OUTTPUT
805: BEEF 5, 10, 100
810: PRINT "EIGENUA LUES"
815: FOR I = I TO N
820: WAIT
825: PRINT "E ("; I;' ") HD (I)
830: NEXT I
840: INPUT "EIGENUE GTORS REQD. ?"; U\$
845: IF U\$ = "NO" THEN GOTO 875
850: FOR J = I TO N
860: PRINT "U ("; I; " "; J.;") = "; U (I, J)
865: NEXT I
870: NEXT J
875: INPUT "CHARGE DENSITIES REQD ?"; C $\$$

```
880: IF C$ = "NO" THEN GOTO 900
885: FOR I = I TO N
890: PRINT "Q ("; I; ") = "; P (I, I)
895: NEXT I
900: INPUT "BOUNDORD ERS REQD? "; P$
905: IF P$ = "NO" THEN GOTO 935
910: FOR I = I TO (N - I)
915: FOR J = (I + I) TO N
920: PRINT "P("; I;" "; J; ") = "; P (I, J)
925: NEXT J
930: NEXT I
935: INPUT "PRINTOUT RESULTS REQD?"; U$
940: IF U$ = "TES" THEN GOSUB }800
950: RETUN
Order Subroutine
600: REM SUBROUTINE ORDER
605: FOR K = I TO N
610: HT = HD (K)
615: JT = K
620: FOR J = K TO N
625: IF HD (J)>= HT THEN GOTO }64
630: HT = HD (J)
635: JT = J
640: NEXT J
645: HD (JT) = HD (K)
650: HD (K) = HT
655: FOR I = I TO N
660: UT (I) = U (I, JT)
665: U (I, JT)=U (I, K)
678: U (I, K) = UT (I)
675: NEXT I
680: NEXT K
685: RETURN
690: END
Printout Subroutines
4000: REM SUBROUTINE
4001: REM PRINTOUT INPUT DATA
4005: CSIZE 3: LF 3
4010: ON RC GOTO 4020, 34030, }404
4020: L PRINT "H. M. O CALCULATIONS"
4025: GOTO 4050
4030: L PRINT "H.M.O WITH W-TECHNIQUE"
4035: GOTO 4050
4040: L PRINT "H.M.O WITH MCLAC HLAN METHOD"
4050: LF I: C SIZE 2
4860: L PRINT NS
4070: LF 1
4080: L PRINT "INPUT DATA"
5000: FOR I = I TO N
```

4000: REM SUBROUTINE
4001: REM PRINTOUT INPUT DATA
4005: CSIZE 3: LF 3
4010: ON RC GOTO 4020, 34030, 4040
4020: L PRINT "H. M. O CALCULATIONS"
4025: GOTO 4050
4030: L PRINT "H.M.O WITH W-TECHNIQUE"
4035: GOTO 4050
4040: L PRINT "H.M.O WITH MCLAC HLAN METHOD"
4050: LF I: C SIZE 2
4860: L PRINT NS
4070: LF 1
4080: L PRINT "INPUT DATA"
5000: FOR I = I TO N

5010: FOR J = I TO N
5020: L PRINT "H ("; I;", "; J; ") = "; H (I, J)
5030: NEXT J
5040: NEXT I
5060: LF 2
5070: LPRINT"NE (I) = NO. OF ELECTONS IN THE ITH M.O"
5080: FOR I I TO N
5090: L PRINT "NE ("; I; ") = "; NE (I)
6000: NEXT I
6010: RETURN
6050: REM PRINTOUT INPUT
6055: REM DATA S.T.C.F.
6060: LT I: C SIZE 3
6070: L PRINT "S.C.C CALCULATIONS"
6080: C SIZE 2: LT I
6090: L PRINT N\$
7000: LF 1
7010: FOR I = I TO N
7020: L PRINT "X ("; I; ") = "; X (I); " "; "Y ("; I; ") = "; Y (I)
7040: NEXT I
7045: LF I
7050: L PRINT "NE (I) = NO. OF ELECTRONS IN THE ITH M.O
7060: FOR I = I TO N
7070: L PRINT "NE ("; I; ") = "'; NE (I)
7080: NEXT I
7090: RETURN
8000: REM SUBROUTINE PRINTOUT RESULTS
8005: LF 2: C SIZE 3
8010: L PRINT "RESULTS"
8022: IF RC = I THEN GOTO 8040

Printout Results Subroutine
8000: REM SUBROUTINE PRINTOUT RESULTS
8005: LF 2: C SIZE 3
8010: L PRINT "RESULTS"
8020: IF RC = I THEN GOTO 8040
8030: C SIZE 2: L PRINT "ITERATION NO. "; K, K
8040: C SIZE 2: LF 1
8050: LPRINT "EIGEN VALUES"
8060: L PRINT "E ("; I; ") = "; HD (I)
8080: NEXT 1
8090: LF 2: L PRINT "CHARGE DENSITIES"
9000: FOR I = I TO N
9010: L PRINT "Q ("; I; ") = "; P (I, I)
9020: NEXT 1
9025: LF 2
9030: L PRINT "EIGENVECTORS"

```
9040: FOR I = I TO N
9050:FOR J = I TO N
9060: L PRINT "U ("; I; ", "; J; ") = "; U (I, J)
9070: NEXT J
9080: LF 2
9090: LPRINT "BOND ORDERS"
10000: FOR I = I TO N
10010: FOR J = I TO N
10020: L PRINT "P("; I; "; "; J; ") = "; P (I, J)
10030: NEXT J
10040: NEXT I
10050: RETURN
```

2. H.M.O. Programme for Sharp PC - 7000; Apple II.

1 TGOTO 2600
10 PRINT "H.M.O. Calculations"
$15 \mathrm{RC}=1$
20 GOSUB 80
25 GOSUB 230
30 GOSUB 600
35 GOSUB 700
40 RETURN
45 END
79 REM
80 REM "input subroutine"
81 REM
85 INPUT "name"; N\$
90 INPUT "no. of atoms"; N
95 DIM H (N, N): DIM HD (N): DIM NE (N): DIM U (N, N): DIM UT (N): DIM P (N, N)
105 FOR I = I TO N
110 FOR J = I TO N
115 FOR J = I TO N
115 PRINT "H ("; I; ", "; J; ") = ";
120 INPUT H (I, J)
$125 \mathrm{H}(\mathrm{J}, \mathrm{I})=\mathrm{H}(\mathrm{I}, \mathrm{J})$
130 NEXT J
135 NEXT I
140 FOR I = I TO N
145 PRINT "NE ("; I;") =";
150 INPUT NE (I)
155 NEXT I
159 PRINT
160 COLOR 3: PRINT "VERIFICATION of H (I, J)":
PRINT "To confirm, press the SPACE bar"
161 PRINT "To alter, press the $=$ key, then key-in the correct value, then press CR": COLOR 7
165 FOR I = I TO N
170 FOR J = I TO N

175 PRINT "H ("; I; "; "; J; ") = ", H (I, J),
177 U\$ = IN KEY \$: IF U \$ = " " THEN 177
178 IF U $\$=$ " " THEN PRINT "O.K.": GOTO 185
179 IF U\$ = " = " THEN PRINT " = "; : INPUT H (I, J):
GOTO 185
185 (I, I)
200
205
215
220
221
222
225
229
230
231
240
245
250
260
265
270
275
280
285
290
2
310 IF SQ > MX THEN LET MX = SQ
315 IF SQ < = EP THEN 510
320
325
330
335
340
345
(I, J))/TD
355
370
380
400
450

465
470
70
(

485
490
$\mathrm{HD}(\mathrm{I})=\left(\mathrm{C} * \mathrm{C}^{*} \mathrm{H}(\mathrm{I}, \mathrm{I})\right)+(\mathrm{S} * \mathrm{~S} * \mathrm{H}(\mathrm{J}, \mathrm{J}))+$ $\left(2{ }^{*} S^{*} \mathrm{C} * \mathrm{H}(\mathrm{I}, \mathrm{J})\right)$
$500 \mathrm{HD}(\mathrm{J})=(\mathrm{C} * \mathrm{C} * \mathrm{H}(\mathrm{J}, \mathrm{J}))+(\mathrm{S} * \mathrm{~S} * \mathrm{H}(\mathrm{I}, \mathrm{I}))-$

	(2*S * ${ }^{*} \mathrm{H}(\mathrm{I}, \mathrm{J})$)
505	$\mathrm{H}(\mathrm{I}, \mathrm{J})=0$
510	IF MX > EP THEN 275
530	RETURN
540	END
599	REM
600	REM order subroutine
601	REM
605	FOR K = I TO N
615	$\mathrm{HT}=\mathrm{HD}(\mathrm{K}): \mathrm{JT}=\mathrm{K}$
620	FOR J = K TO N
625	IF HD (J) > = HT THEN 640
630	$\mathrm{HT}=\mathrm{HD}(\mathrm{J}): \mathrm{JT}=\mathrm{J}$
640	NEXT J
645	$\mathrm{HD}(\mathrm{JT})=\mathrm{HD}(\mathrm{K}): \mathrm{HD}(\mathrm{K})=\mathrm{HT}$
655	FOR I = I TO N
660	$\mathrm{UT}(\mathrm{I})=\mathrm{U}(\mathrm{I}, \mathrm{JT}): \mathrm{U}(\mathrm{I}, \mathrm{JT})=\mathrm{U}(\mathrm{I} . \mathrm{K})=\mathrm{UT}(\mathrm{I})$
670	NEXT: NEXT
685	RETURN
690	END
699	REM
700	REM subroutine bond-orders
701	REM
705	FOR R = I TO N
710	FOR $\mathrm{S}=\mathrm{R}$ TO N
715	$\mathrm{SM}=\mathrm{O}$
720	FOR J = I TO N
725	$\mathrm{SM}=\mathrm{SM}+\mathrm{NE}(\mathrm{J}) * \mathrm{U}(\mathrm{R}, \mathrm{J}) * \mathrm{U}(\mathrm{S}, \mathrm{J})$
730	NEXT J
740	$\mathrm{P}(\mathrm{R}, \mathrm{S})=\mathrm{SM}$
745	NEXT S
750	NEXT R
755	RETURN
799	REM
800	REM
801	REM output subroutine
2600	REM bondorders and forceconstants
2605	GOSUB 10
2610	FOR R = I TO ($\mathrm{N}-\mathrm{I}$)
2615	FOR S $=(\mathrm{R}+\mathrm{I}) \mathrm{TO} \mathrm{N}$
2620	IFH (R, S) = O THEN LET P (R, S $)=0$
2625	$\mathrm{P}(\mathrm{S}, \mathrm{R})=\mathrm{P}(\mathrm{R}, \mathrm{S})$
2645	NEXT: NEXT
2655	IF ((N/2) - INT (N/2)) = OTHEN GO TO 2685
2660	$\mathrm{X}=(\mathrm{N}+1) / 2$
2675	NE (X) $=2$
2680	GOTO 2700
2685	$\mathrm{X}=(\mathrm{N} / 2)+1$
2695	$\mathrm{NE}(\mathrm{X})=\mathrm{NE}(\mathrm{X})+1$
2700	GOSUB 700

(2 * S * C * H (I, J))
$\mathrm{H}(\mathrm{I}, \mathrm{J})=0$
IF MX > EP THEN 275
RETURN
END
REM
REM order subroutine
REM
FOR K = I TO N
$\mathrm{HT}=\mathrm{HD}(\mathrm{K}): \mathrm{JT}=\mathrm{K}$
FOR J = K TO N
IF HD (J) > = HT THEN 640
$\mathrm{HT}=\mathrm{HD}(\mathrm{J}): \mathrm{JT}=\mathrm{J}$
NEXT J
HD (JT) = HD (K): HD (K) = HT
FOR I = I TO N
UT (I) $=\mathrm{U}(\mathrm{I}, \mathrm{JT}): \mathrm{U}(\mathrm{I}, \mathrm{JT})=\mathrm{U}(\mathrm{I} . \mathrm{K})=\mathrm{UT}(\mathrm{I})$
NEXT: NEXT
RETURN
END
REM
REM subroutine bond-orders
REM
FOR R = I TO N
FOR $S=R$ TO N
SM = 0
FOR J = I TO N
$\mathrm{SM}=\mathrm{SM}+\mathrm{NE}(\mathrm{J}) * \mathrm{U}(\mathrm{R}, \mathrm{J}) * \mathrm{U}(\mathrm{S}, \mathrm{J})$
NEXT J
$P(R, S)=S M$
NEXT S
NEXT R
RETURN
REM
REM

REM bondorders and forceconstants
GOSUB 10
FOR R = I TO ($\mathrm{N}-\mathrm{I}$)
FOR $S=(R+I)$ TO N
$\operatorname{IFH}(R, S)=0$ THEN LET $P(R, S)=0$
$P(S, R)=P(R, S)$
NEXT: NEXT
$\operatorname{IF}((\mathrm{N} / 2)-\operatorname{INT}(\mathrm{N} / 2))=$ OTHEN GO TO 2685
$\mathrm{X}=(\mathrm{N}+1) / 2$
$\mathrm{NE}(\mathrm{X})=2$
GOTO 2700
$\mathrm{X}=(\mathrm{N} / 2)+1$
(X) 10 (X) +1

GOSUB 700

2750 L=O
2710 FOR R = I TO ($\mathrm{N}-\mathrm{I}$)
2715 FOR $S=(\mathrm{R}+\mathrm{I})$ TO N
$2720 \operatorname{IF} \mathbf{H}(\mathrm{R}, \mathrm{S})=0$ THEN LET $\mathrm{P}(\mathrm{R}, \mathrm{S})=0$
$2730 \mathrm{~K}=5.47^{*}(1+\mathrm{P}(\mathrm{S}, \mathrm{R}))-2.06$
$2737 \mathrm{KA}=5.47$ * $(\mathrm{I}+\mathrm{P}(\mathrm{R}, \mathrm{S}))-2.06$
$2740 \mathrm{~L}=\mathrm{L}+\left(\left(\left(\mathrm{K}^{*} \mathrm{KA}\right)\right)^{*}((.18\right.$ * $(\mathrm{P}(\mathrm{R}, \mathrm{S})-\mathrm{S}, \mathrm{R})))$
2) $) / K+K A))$

2745 NEXT: NEXT
2750 PRINT "L = "; L * 6.25
2755 INPUT "LO = "; LO
2760 G = (L + LO)/4
2765 PRINT "FREE ENERGY ="; G
2770 END
Pyridene input data
$\mathrm{H}(1,1)=.5$
$H(1,2)=1$
$H(1,3)=0$
$H(1,4)=0$
$H(1,5)=0$
$H(1,6)=1$
$H(2,2)=0$
$H(2,3)=1$
$H(2,4)=0$
$H(2,5)=0$
$H(2,6)=0$
$H(3,3)=0$
$H(3,4)=1$
$H(3,5)=0$
$H(3,6)=0$
$H(4,4)=0$
$H(4,5)=1$
$H(4,6)=0$
$H(5,5)=0$
$H(5,6)=1$
$H(6,6)=0$
NE (I) No. of electrons in the Ith M.O.
NE (1) $=2$
NE (2) $=2$
NE (3) $=2$
NE (4) $=0$
NE (5) $=0$
NE (6) $=0$
RESULTS

Pyridene	$\mathrm{E}(3)=-1$
Eigenvalues	$\mathrm{E}(4)=0.840961$
$\mathrm{E}(1)=-2.10745$	$\mathrm{E}(5)=$.999999 $\mathrm{E}(2)=-1.16719$
$\mathrm{E}(6)=1.93368$	

Charge Densities	$u(5,5)=-.5$
Q (1) = 1.19521	$u(5,6)=-.437109$
$Q(2)=.922953$	$u(6,1)=.418504$
$Q(3)=1.00449$	$u(6,1)=.418504$
$Q(4)=.949912$	$u(6,2)=-.190608$
$Q(5)=1.00449$	$u(6,3)=.5$
$Q(6)=.922953$	$u(6,4)=-.366024$
Eigenvectors	$u(6,5)=.5$
$u(1,1)=.520706$	$u(6,6)=.393127$
$u(1,2)=.571374$	
$u(1,3)=1.47859 \mathrm{E}-07$	Bondorders
$u(1,4)=.545913$	$\mathrm{P}(1,1)=1.19521$
$u(1,5)=2.75323 \mathrm{E}-07$	$P(1,2)=.653652$
$u(1,6)=-.323073$	$P(1,3)=-2.24717 \mathrm{E}-02$
$u(2,1)=.418504$	$P(1,4)=-.326131$
$u(2,2)=.190608$	$P(1,5)=-2.24719 \mathrm{E}-02$
$u(2,3)=-.5$	$P(1,6)=.653652$
$u(2,4)=-.366024$	$\mathrm{P}(2,1)=0$
$u(2,5)=-.5$	$P(2,2)=.922953$
$u(2,6)=.393128$	$P(2,3)=.669378$
$\mathrm{u}(3,1)=.361268$	$P(2,4)=5.90611 \mathrm{E}-02$
$u(3,2)=.348896$	$P(2,5)=-.330621$
$u(3,3)=-.5$	$P(2,6)=-.077046$
$u(3,4)=-.238101$	$\mathrm{P}(3,1)=0$
$u(3,5)=.499999$	$\mathrm{P}(3,2)=0$
$u(3,6)=-.43711$	$P(3,3)=1.00449$
u (4, 1) $=.342849$	$\mathrm{P}(3,4)=.664888$
$u(4,2)=.597838$	$P(3,5)=4.48656 \mathrm{E}-03$
$u(4,3)=-1.42913 \mathrm{E}-07$	$P(3,6)=-.330621$
$u(4,3)=.566257$	$\mathrm{P}(4,1)=0$.
$u(4,5)=2.96085 \mathrm{E}-07$	$P(4,2)=0$
$u(4,6)=.452101$	$P(4,3)=0$
$u(5,1)=.361268$	$P(4,4)=.949912$
$u(5,2)=.348897$	$P(4,5)=.664888$
$u(5,3)=.5$	$P(4,6)=.059061$
$u(5,4)=-.2381$	$\mathrm{P}(5,1)=0$

$P(5,2)=0$
$P(5,3)=0$
$P(5,4)=0$
$P(5,5)=1.00449$
$P(5,6)=.669378$
$P(6,1)=0$
Acknowledgement. Financial Assistance from Pakistan Science Foundation (PSF-C-QU-Chem. 137) is gratefully acknowledged.

REFERENCES

1. See. e.g. (a) Robert G. Parr, Quantum Theory of Molecular Electronic Structure, W.A. Benjamin, 1963; (b) A. Streitwieser Jr., Molecular Orbital Theory for Organic Chemists (John Wiley, 1961), (c) M.J.S. Dewar, The Molecular Orbital Theory of Organic Chemistry (McGraw Hill, 1969).
2. (a) See ref. 1 (b) above; (b) L. Salem, Molecular Orbital Theory of Conjugated System, Benjamine 1966; (c) K. Yates, Huckel Molecular Orbital Theory (Academic Press, 1978); (d) C.A. Coulson, S.O. Leary and R.B. Mallion, Huckel Theory for Organic Chemists (Academic Press, 1978); (d) For some Recent Applications see Y. Ikegami, J. Phys. Chem., 89, 339 (1985), M. Mohammad et al, Proceedings Conference on Industrial Uses of Electrochemistry, Islamabad, Pakistan, Dec. 1982.
3. H.H. Greenwood, Computing Methods in Organic Chemistry (Wiley, 1972).
4. H.M. Gladney, Technical Report LCAOSCF Programme, Quantum Chemistry Programme Exchange, (Indiana University, Bloomington, New Jersey, USA).
5. G.W. Wheland and D.E. Mann, J. Chem. Phys., 17, 264 (1949).
6. See ref. 1(b) above.
