Pakistan J.Sci. Ind. Res., Vol. 29, No.4, August 1986

PREPARATION AND CHARACTERIZATION OF PVC STABILIZERS: BASED ON MIXTURE OF ZINC, CALCIUM AND BARIUM SALTS OF THE CARBOXYLIC ACID

Ahmad Ali, Ikram-ud-Din, K.M. Janjua and Shaukat Ali*

PCSIR Laboratories, Lahore

(Received January 24, 1985; revised April 8, 1986)

Different types of PVC stabilizers based on different divalent metals salts of the long chain fatty acids from various oils. Sunflowers oil based composition having Zn/Ca in the ratio of 1:1 and 1:1.5 showed good results. The other oils coconut oil, soyabean oil and linseed oil did not show encouraging results. The ratio between zinc and barium should not exceed 1:2 in case of soyabean oil. All the results were compared with imported stabilizer (ICI).

INTRODUCTION

Different types of stabilizers have already been used in PVC composition. These are usually stearates of metals like Ba, Cd, Zn, Ca, Pb, etc. [1] Sometimes as a single compound, sometime in compound formulation [2]. Recently mixed stabilizers which are synergistic mixture of metal compound of group-II (Ca, Cd, Ba, Zn) are in use. These mixtures are very much effective. [3] Comparative studies have been carried out between different types of stabilizers, but the best results have been obtained when barium-zinc based stabilizers have been used. [4].

It has been observed that Pd and organotin stabilizers were most effective during thermal aging where as cadmium stearates, calcium stearates mixtures were more effective during photo degradation [7].

Dark b

It has been observed that in Pb stabilized systems the unsaturation in the polymers increases as a result of degradation, but in Ba, Cd, Zn stabilized systems the unsaturation appeared very slowly. [8]. It has been observed that magnesium stearates and alkali metal carbonate exhibits synergism as heat stabilizer for resins such as PVC. [9]

The synergistic effects was most pronounced for the initial colour of PVC compound where Ca and Zn complexes were used for stabilization. Optimum results were obtained when 25% primary stabilizer (Ca/Zn complex) was replaced by about 10% of each co-stabilizer. [10]

*F.C. College, Lahore.

The melt flow index increased and the physicochemical properties and resistance to photo thermal aging of plasticized PVC compound for leather coating were improved by stabilization with a 0.15:0.85 eutectic mixture of Castearate and Cd-stearate [11].

The co-precipitation of metallic salts gave very encouraging results. The metal soaps and lead salts were co-precipitated in water to a slurry which was spray dried. PVC compounded with this material remained stable for 83 min at 180° C [16]

Ba and Cd soaps of synthetic C_5 - C_9 fatty acids were effective stabilizers for PVC. Ba and Cd epoxy stearates, benzoates, salicylates and stearates were less effective [17].

Polyvinyl chloride stabilizers having good quality was prepared by heating mixtures of Cd0, Zn0, Pb0, Ba $(OH)_2$, and Ca $(OH)_2$ with C₅-C₂0 carboxylic acid fraction at 60-130°C in the presence of Ca-alkyl benzene sulfonate[19]. The formation of chloride and polymer coloration during thermal degradation of PVC stabilized with a zinc/calcium recipe has been studied.[20]

EXPERIMENTAL AND PROCEDURE

Coconut oil, soyabean oil and sunflower oil were used as purchased. Linseed oil was extracted from the seeds.

Zinc chloride, barium chloride, calcium chloride (BDH) sodium hydroxide, hydrochloric acid toluene (commercial) were used without further purification. Reference stabilizer (ICI metal complex stabilizer) was used.

PROCEDURE

Preparation of fatty acid mixture from the oils. Sodium hydroxide (30 g) in 50 cm³ distilled water was added slowly to 140 g of oil at 180-200°C. The saponification resulted was completed by vigorous stirring at 200°C for 25 minutes. After cooling to 30°C, the mixture was shaken with excess distilled water. Two layers were obtained and the upper layer containing the fatty acid salts was removed and neutralized with 1:1 HCl to form the free acids which were removed with a separating funnel. The yields of mixed fatty acids based on the original weight of oil were – coconut oil 69%, linseed oil 79%, soyabean oil 79% and sunflower oil 86%.

Characterization of stabilizer. The stabilizer was characterized by making a compound of polyvinylchloride, and stabilizer with following composition: Polyvinylchloride powder = 3 grams Stabilizer = 0.09" (3%)

Then heated for fifteen minutes at different temperatures (150-180°C) to study the thermal property of stabilizer in oven. The results are shown in Tables (1, 2, 3, 4).

Preparation of salts of divalent metals with free fatty acids. 'Mixtures of zinc and barium and of zinc and calcium salts of fatty acids were prepared by adding 3 g of mixed chlorides in 10 cm³ water to 10 g of the fatty acids at 200-220°C. After 15 min with continuous stirring, the mixture was cooled to 30°C, shaken with excess distilled water, and the upper layer of mixed fatty acid salts separated. The mixed salts were found to be soluble in tetrahydrofuran, chloroform, carbon tetrachloride, xylene and tolune. For use as stabilizers, a clear solution of 4 g in 10 cm³ toluene was used'.

Results

Table-1. Stabilizers based on coconut oil in the absence of plasticizer The samples were kept 15 minutes on each temperature

	Com	positions	Colours at						
No.	Zn	Bs	150°C		160°C	170°C	180°C		
1	3	2:1	Blakish	1125	Bluish black	Dark bluish black	Black		
2	5	1.5:1	No change		Light green	Brownish grey	Black		
3	1	1:1	Light grey		Dark grey	Sandy black	Black		
4	4	1:1.5	White		Off white	Off white	Black		
5	2	1:2	Blakish		Black	Dark black	Black		
	Zn	Ca			in the short of the second				
6	8	2:1	Light grey		Grey	Sandy grey	Black		
7	10	. 1.5:1	Creamy		Creamy	Whitish cream	Black		
8	6	1:1	Light biscuit		Cream	Cream	Black		
9	9	1:1.5	White		Off white	Greyish white	Black		
0	7	1:2	Slight yellow		Light yellow	Yellow	Black		
1	11	Reference	Creamy		Cream	Pinkish cream	Black		

Preference: Zn Ca Zn Ca Zn Ca

1:1 1:2 1.5:1 compositions are acceptable.

Therefore the amount of calcium should not more than double to zinc amount. The zinc/calcium ratio should not exceed 3:4.

		Co	mpositior	IS		Colours at				
No.	\mathcal{D}^{*}	Zn		Ba	150°C	160°C	170°C	2	180°C	85
1		3		2:1	Fine white	White	Off white		Black	1
2		5		1.5:1	White	Dirty white	Dirty white		Black	
3		1		1:1	Pale yellow	Yellow	Yellow		Black	
4		4		1:1.5	Fine white	White	White		Black	
5		2		1:2	Light pale yellow	Pale yellow	Pale yellow		Black	
		Zn		Ca						
6		8		2:1	White	Dirty white	Dirty white		Black	
7		10		1.5:1	Off white	Off white	Off white		Black	
8		6		1:1	Off white	Light pale yellow	Pale yellow		Black	
9		9		1:1.5	Off white	Pale yellow	Pale yellow		Black	
10		7		1:2	Off white	Off white	Dirty white		Black	
11		11		Reference	Creamy	Creamy	Pinkish cream		Black	

Table-2. Stabilizersbased on soyabean oil in the absence of plasticizerThe samples were kept 15 minutes on each temperature

Preference: Zn

Zn Ba Zn Ca

1:1 1:2 1:1 1:1.5 compositions are acceptable.

Ca

Therefore the ratio between Z/Ca should not 1:1.5 exceed and in case of Zn/Ba it should not exceed 1:2.

aus areas science restring and such and

Ba

Table-3. Stabilizers based on linseed oil in the absence of plasticizer

Zn

The samples were kept 15 minutes on each temperature

	Composi	tions		Colours at				
No.	Zn	Ba	150°C	160°C	170°C	180°C		
1	3	2:1	Light brown	Brownish	Brown	Black		
2	5	1.5:1	Whitish brown	Whitish brown	Light brown	Black		
3	1	1:1	Whitish brown	Whitish brown	Light brown	Black		
4	4	1:1.5	Off white	Light brown	Yellow	Black		
5	2	1:2	Off white	Whitish brown	Light brown	Black		
	Zn	Ca		tion in the main state				
5	8	2:1	Whitish brown	Pinkish	Pale	Black		
7	10	1.5:1	Off white	Off white	Whitish brown	Black		
8	6	1:1 0	Pale yellow	Pinkish	Pale	Black		
9	9	1:1.5	Whitish brown	Pale not home be	Pale	Black		
0	7	1:2	Whitish brown	Pinkish	Brownish pale	Black		
1	11	Reference	Creamy	Cream	Pinkish cream	Black		

Preference: Zn Ba Zn Ca Zn Ca Zn Ca 1:1.5 1:1 2:1 1:1.5

Compositions are acceptable.

239

		Compositions					Colou	irs at		
No	180°C	Zn	Ba	10	150°C	. ·	160°C	170°C	2.1	180°C
1		3	1:1.5		White	at bi	Off white	Dirty white	8	Black
2		5	1.5:1	state	White		Off white	Greyish yellow		Black
3		1	. 1:1		Off white		Light pale	Pale yellow		Black
4		4	1:1.5		Light yellow		Dark yellow	Brownish yellow	v	Black
5		2	1:2		Off white		Light pale	Pale yellow		Black
		Zn	Ca							
6		8	2:10	- Star	White		Dirty white	Cream		Black
7		10	1.5:1		Light pale		Yellow	Deep yellow		Black
8		6	<pre>>>(=>1:1)</pre>		Light pale		Pale yellow	Yellow		Black
9		9	1:1.5		White		Dirty white	Cream		Black
0		7	1:2		Off white		Light pale	Dirty pale yello	W	Black
1		11	Referen	ice	Creamy		Cream	Pinkish cream		Black

Table 4. Stabilizers based on sunflower oil in the absence of plasticizer The samples were kept 15 minutes on each temperature

Preference: Ba Zn Ba Zn Ba Zn Ca Zn 1:1.5 1.5:1 1:2 1:1 Compositions are acceptable. Zn Ca Zn Ca 2:1 1:1.5

DISCUSSION

Barium, cadmium salts of fatty acid along with or without zinc work as good stabilizer for PVC. Due to the carcinogenic nature of cadmium, its salts were not used in these studies. Calcium and zinc metals are in the list of essential trace metals required by the human body. So calcium and zinc based stabilizers can go for food packaging and in pharmaceutical applications. In these studies Ca/Zn based stabilizers showed their thermal stabilization quality. zinc/barium based stabilizers did not show encouraging results because different metallic salt combinations have different thermal stabilization powers. Specific ratios in the metallic salts play an important role for thermal stability. When the ratio between Ca/Zn was kept 1:1, 1:2, 1.5:1, they showed very good thermal stabilization property. Calcium and barium laurates in the above mentioned ratio also showed thermal stabilizing quality. Similary Ba/Zn based stabilizer also exhibited good thermal stabilizing power. Stabilizers prepared on the base of linseed oil showed poor thermal stabilizing power (Table-2) while sunflower oil based stabilizers showed very good thermal stabilizing property (Table-4). These results clearly indicate that the nature of fatty acid used for the preparation of stabilizers plays a vital role in the stabilization of PVC.

The co-precipitation of metallic soaps gave stabilizers having synergistic properties. The thermal stabilization power increased considerably in case of co-precipitation of metallic soaps used for the preparation of stabilizers.

REFERENCES

- 1. H. Verlty Smith, British Plastics Journal, 27, 176 (1954).
- 2. E.G. Vellells, Trance Plast. Inst., 23, 44 (1955).
- 3. J. Novak, Kunstastoffe, 55, 833 (1965).
- Akishimakagakn; Kogyo, K.K. Japan. Kokai. Tokyo. Koho. JP., 82, 143 (1982).
- 5. Tokyo Fine Chem. Co. Ltd., Japan. Kohai. Tokyo. Koho. JP., 40539 (1982).
- Hoffmann; Kalaus; Werner; Karetzschman, Klaus., Siemens Forsch. Pent.
- 7. Deanin Rudolph, D. Borzensks, Frank. J. Wattarson
- Am. Chem. Soc., Div., Org, Coating Plast. Champ Pap. 31, 763 (1971).
- 8. Dieckmann, Dale, J. Fletcher, W. Charles. Beig, 886, 739 (1981).
- 9. M. Mikae Lyan, Angew Makromol Champ. 114, (1983).

* * * *