RAMAN AND INFRARED STUDIES FOR $\mathrm{NbF}_{5} \mathrm{O}_{2}{ }^{\mathbf{2 -}}$ ION

E.M. Nour, A.B.El-Sayed*,F. Abdel-Rehim**
Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt

(Received December 17, 1984)

The Raman and infrared spectra of $\mathrm{NbF}_{5} \mathrm{O}_{2}^{-}$ion have been investigated. The observed bands are assigned on the basis of $\mathrm{C}_{2 \mathrm{v}}$ symmetry. The $\nu_{(0-0)}, \nu_{\mathrm{s}(\mathrm{Nb}-0)}$ and $\nu_{\mathrm{as}}{ }_{(\mathrm{Nb}-\mathrm{O})}$ stretching frequencies are observed at 955,880 and $900 \mathrm{~cm}^{-1}$, respectively.

INTRODUCTION

The peroxo compounds of transition elements are of special interest and growing importance in relation to the various types of metal ion-catalyzed reactions of hydrogen peroxide and molecular oxygen particularly in biological systems [1] such as the metal-centred proteins.Leavitt et al. [2,3] have prepared the interesting peroxo species pentafluoroperoxoniobate $(\mathrm{V}) ; \mathrm{NbF}_{5} \mathrm{O}_{2}{ }^{2-}$ ion, where niobium forms seven coordinates. Recently, Stomberg [4,5] has reported the crystal structure of this ion in the form of $\mathrm{Na}_{2} \mathrm{NbF}_{5} \mathrm{O}_{2}$ and $\mathrm{Na}_{3} \mathrm{HF}_{2} \mathrm{NbF}_{5} \mathrm{O}_{2}$. He has shown the symmetry of the $\mathrm{NbF}_{5} \mathrm{O}_{2}^{2-}$ ion assumes almost the $\mathrm{C}_{2} \mathrm{~V}$ point group where the peroxo group occupies two adjacent equatorial positions with $\mathrm{O}-\mathrm{O}$ bond distance measưring $1.48 \AA$ and the axial $\mathrm{Nb}-\mathrm{F}$ bonds are shorter than these occupying the equatorial positions.

In a previous work these authors have applied successfully vibrational spectroscopic studies in investigating many short-lived [6] as well as stable [7] peroxo species of some metal complexes. Here these authors present the results collected from the Raman and infrared measurements of the peroxo ion $\mathrm{NbF}_{5} \mathrm{O}_{2}{ }^{2-}$. The aim is to establish with the aid of group theoretical analysis the assignments of the different fundamental vibrational modes related to the metal-peroxo unit as well as those associated with different $\mathrm{Nb}-\mathrm{F}$ bonds. This may enable us to understand the nature of bonding inherent in this compound.

EXPERIMENTAL

The solid peroxo compounds $\mathrm{Na}_{2} \mathrm{NbF}_{5} \mathrm{O}_{2}$ and $\mathrm{Na}_{3} \mathrm{HF}_{2}$ $\mathrm{NbF}_{5} \mathrm{O}_{2}$ were prepared and characterized according to the

[^0]known methods $[4,5]$.
Spectroscopic measurements. Raman spectrum was measured with a Cary Model 82 spectrometer equipped with a coherent radiation Model 53 argon ion laser. Laser excitation lines 514.5 and 488.0 nm were selected to record the spectrum of the peroxo species. To prevent decomposition by the laser beam, the sample as a pressed disc (20% by weight in KBr), was spun at approximately 2000 rpm in a conventional rotating disc holder.

Infrared spectrum was recorded from potassium bromide disc (1% by weight) on a Pye Unicam SP 2000 infrared spectrometer.

RESULTS AND DISCUSSION

The Raman spectrum of $\mathrm{NbF}_{5} \mathrm{O}_{2}{ }^{2-}$ ion recorded by applying the 514 nm laser excitation line is shown in Fig. 1. The corresponding infrared spectrum is indicated in Fig. 2. X-ray crystallographic studies $[4,5]$ on $\mathrm{NbF}_{5} \mathrm{O}_{2}{ }^{2^{-}}$ion conclusively show that this species has the pentagonal bipyramidal structure in which the peroxo group acts as a bidentate ligand and occupies two adjacent equatorial positions with ($\mathrm{O}-\mathrm{O}$) and ($\mathrm{Nb}-\mathrm{O}$) bond distances measuring 1.48 and $1.93 \AA$ respectively. Three fluoride atoms occupy the remaining equatorial positions whereas the remaining two fluoride atoms occupy axial positions with shorter $\mathrm{Nb}-\mathrm{F}$ bond distance measuring $1.92 \AA$. Accordingly, the $\mathrm{NbF}_{5} \mathrm{O}_{2}^{2-}$ ion possesses a $\mathrm{C}_{2 \mathrm{v}}$ symmetry and calculation predicts to display eighteen different modes of vibrations. These are resolved according to the vibrational representation:
$\tau_{\text {vib. }}=7 \mathrm{~A}_{1}+2 \mathrm{~A}_{2}+4 \mathrm{~B}_{1}+5 \mathrm{~B}_{2}$

These eighteen non-degenerate modes are infrared and Raman active except for the A_{2} modes which are only Raman active. Among these, $2 \mathrm{~A}_{1}+\mathrm{B}_{2}$ modes are associa-

Table 1. Various symmetry coordinates for $\mathrm{NbF}_{5} \mathrm{O}_{2}{ }^{2-}$ ion

Symmetry species	Symmetry coordinate	Description
A_{1}	$\mathrm{S}_{1}=\mathrm{t}$	O-0; stretch
	$\mathrm{S}_{2}=1 / \sqrt{2}\left(\mathrm{~T}_{1}+\mathrm{T}_{2}\right)$	$\mathrm{Nb}-\mathrm{O}$; stretch
	$\left.S_{3}=1 / \sqrt{2\left(W_{1}\right.}+W_{2}\right)$	$\mathrm{Nb}-\mathrm{F}^{\prime}$; stretch
	$\mathrm{S}_{4}=\mathrm{R}$	$\mathrm{Nb}-\mathrm{F}$; stretch
	$\mathrm{S}_{5}=1 / \sqrt{2}\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)$	$\mathrm{Nb}-\mathrm{F}^{\prime \prime}$; stretch
	$S_{6}=1 / \sqrt{2}\left(\propto_{1}+\propto_{2}\right)$	F. $\mathrm{Nb} \mathrm{F}^{\prime \prime}$; bend
	$S_{7}=1 / \sqrt{2}\left(\delta_{1}+\delta_{2}\right)$	$\mathrm{F}^{\prime} \mathrm{Nb} \mathrm{F}^{\prime \prime}$; bend
A_{2}	$S_{8}=1 / \sqrt{3^{4}}\left(\oplus_{1}-\mathrm{O}_{2}-\oplus_{3}+\oplus_{4}\right)$	F Nb F'; bend
	$\mathrm{S}_{9}=1 / \sqrt{4}\left(\gamma_{1}-\gamma_{2}-\gamma_{3}+\gamma_{4}\right)$	$\mathrm{F}^{\prime} \mathrm{Nb} \mathrm{O}$; bend
B_{1}		
	$\mathrm{S}_{11}=1 / \sqrt{2}\left(\delta_{1}-\delta_{2}\right)$	$\mathrm{F}^{\prime} \mathrm{Nb} \mathrm{~F}^{\prime \prime} \text {; bend }$
	$S_{12}=1 / \sqrt{4}\left(\gamma_{1}+\gamma_{2}-\underline{\gamma}_{3}-\gamma_{4}\right)$	$\mathrm{F}^{\prime} \mathrm{Nb} \mathrm{O}$ bend
	$\mathrm{S}_{13}=1 \sqrt{4}\left(\phi_{1}+\phi_{2}+\phi_{3}-\phi_{4}\right)$	F $\mathrm{Nb} \mathrm{F} \mathrm{F}^{\prime}$; bend
B_{2}	$\mathrm{S}_{14}=1 / \sqrt{2}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)$	$\mathrm{Nb}-\mathrm{O}$ stretch
	$\mathrm{S}_{15}=1 / \sqrt{2}\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)$	$\mathrm{Nb}-\mathrm{F}$ stretch
	$\mathrm{S}_{16}=1 / \sqrt{2}\left(\propto_{1}-\propto_{2}\right)$	$\mathrm{F} \mathrm{Nb} \mathrm{F}^{\prime \prime}$ bend
	$\mathrm{S}_{17}=1 / \sqrt{2}\left(\mathrm{~B}_{1}-\mathrm{B}_{2}\right)$	FNbO bend
	$\mathrm{S}_{18}=1 / \sqrt{2}\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)$	Expressed in S_{14}

ted to the NbO_{2} unit (local symmetry of $\mathrm{C}_{2 \mathrm{v}}$ as of the

Fig. 1. Raman spectrum of $\mathrm{NbF}_{5} \mathrm{O}_{2}{ }^{2-}$
entire molecule). These are designated as $\nu_{(0-0) ;}\left(A_{1}\right)$ and $\mathrm{Nb}-\mathrm{O}$ stretching vibrations $\left(\mathrm{A}_{1}+\mathrm{B}_{2}\right)$. The remaining modes, five out of them $3 A_{1}+B_{1}+B_{2}$, belong to different $\mathrm{Nb}-\mathrm{F}$ stretching vibrations while the angle bends are associated with $2 \mathrm{~A}_{1}+2 \mathrm{~A}_{2}+3 \mathrm{~B}_{1}+3 \mathrm{~B}_{2}$ vibrational modes.

In order to perform accurate assignments, the molecular vibrational motions of polyatomic molecules, however, may be best described in terms of symmetry coordinates [8]. These were constructed for the $\mathrm{NbF}_{5} \mathrm{O}_{2}{ }^{2-}$ ion exhibiting the $\mathrm{C}_{2 \mathrm{v}}$ symmetry using the internal coordinates defined in Fig. 3 and tabulated in Table 1.

Band assignments. The observed infrared and Raman bands are assigned as indicated in Table 2. As mentioned before, the NbO_{2} unit in $\mathrm{NbF}_{5} \mathrm{O}_{2}^{2^{-}}$ion is expected to diplay three modes of vibration. Thus the Raman band at $955 \mathrm{~cm}^{-1}$ is assigned to the $0-0$ stretching vibration [5]. while the symmetric and anti-symmetric $\mathrm{Nb}-\mathrm{O}$ stretching vibrations S_{2} and S_{14} are assigned to the Raman band at $880 \mathrm{~cm}^{-1}$ and the infrared band at $900 \mathrm{~cm}^{-1}$ respectively.

Table 2. Iqfrared and Raman bands for $\mathrm{NbF}_{5} \mathrm{O}_{2}{ }^{2-}$ ion in cm^{-1}

Infrared	Raman	Assignments
650 W	955 m	$\mathrm{A}_{1}: \mathrm{v}_{1} ; 0-0$ str.
	880 m	$\mathrm{v}_{2} ; \mathrm{Nb}-0$ str.
	696 s	$\mathrm{v}_{3} ; \mathrm{Nb}-\mathrm{F}$ 'str.
	660 s	$\mathrm{v}_{4} ; \mathrm{Nb}-\mathrm{F}{ }^{\prime \prime}$ str.
	608 m	$\mathrm{v}_{5} ; \mathrm{Nb}-\mathrm{F}^{\prime \prime}$ str.
	$\begin{gathered} 215 \mathrm{~s} \\ 195 \mathrm{~s} \end{gathered}$	$\mathrm{v}_{6} ; \mathrm{F} \mathrm{Nb} \mathrm{F}^{\prime \prime}$ bend. $\mathrm{V}_{7} \cdot \mathrm{FNb} \mathrm{F}^{\prime \prime}$ bend
730 s	728 sh	$\mathrm{B}_{1}: \mathrm{v}_{10} ; \mathrm{Nb}-\mathrm{F}^{\prime}$ str.
497 m		$\mathrm{v}_{12} ; \mathrm{F}^{\prime} \mathrm{NbO}$ bend
900 w		$\mathrm{B}_{2} \quad \mathrm{v}_{14} ; \mathrm{Nb}-\mathrm{O}$ str.
730 s		$\mathrm{v}_{15} ; \mathrm{Nb}-\mathrm{Fstr}$.
481 m		$\mathrm{v}_{17} ; \mathrm{F} \mathrm{Nb} 0$ bend
1195 w		$\mathrm{v}_{10}+\mathrm{v}_{17}$
1450 w		$2 \mathrm{v}_{10}$

* $\mathrm{s}=$ strong, $\mathrm{m}=$ medium $, \mathrm{w}=\mathrm{weak}, \mathrm{sh}=$ shoulder.

Fig. 2. Infrared spectrum of $\mathrm{NbF}_{5} \mathrm{O}_{2}{ }^{2-}$
Although the assignments of these $\mathrm{Nb}-\mathrm{O}$ modes are based on their intensities and they also are in agreement with the reported $[9,10]$ wave numbers for the other niobium (V) - oxygen species, however, the value of wave number for the peroxo as well as the $\mathrm{Nb}-\mathrm{O}$ stretching vibrations in $\mathrm{NbF}_{5} \mathrm{O}_{2}{ }^{2-}$ ion are somewhat higher than those reported for other metal-peroxo species as illustrated in Table 3. This may be understood from the fact that when the proxo group coordinates to $\mathrm{Nb}(\mathrm{V})$ central atom the
process is expected to involve both σ and π-donation from the ligand to the metal ion. This is probably expected to strengthen the $\mathrm{Nb}-\mathrm{O}$ bonds and hence reflects the higher values of their stretching wave number. Such donation is very likely to take place because of the very high positive charge surrounding the niobium atom and also the deprivation of its d-orbital from its electons. However, the $\pi-$ donation of electrons from the peroxo group is expected to come from its π^{*} - molecular orbital (Fig. 4). This would increase the $\mathrm{O}-\mathrm{O}$ bond order and hence its stretching wave number compared with $\mathrm{H}_{2} \mathrm{O}_{2}$ and other peroxo compounds.

The assignment of the various modes associated with the metal fluoride bonds in $\mathrm{NbF}_{5} \mathrm{O}_{2}{ }^{2-}$ ion may be' achieved by considering the assignments reported for some related niobium (V)-halogen compounds such as NbX_{5}. Com-

Bond coordinates:

Angle coordinates:

Fig. 3. Definition of the internal coordinates in $\mathrm{NbF}_{5} \mathrm{O}_{2}{ }^{2-}$

Table 3. Vibrational wave numbers $\left(\mathrm{cm}^{-1}\right.$ of the peroxo and peroxo-metal links in different compounds

Compound	${ }^{\mathrm{v}} \mathrm{O}-\mathrm{O}$)	${ }^{\mathrm{v}}$ (M-0)	Ref.
$\mathrm{H}_{2} \mathrm{O}_{2}$	880	-	15
$\left((\mathrm{CN})_{5} \mathrm{CoO}_{2} \mathrm{Co}(\mathrm{CN})_{5}\right)^{6-}$	880	610	7
((DMSO) (Salen) $\mathrm{CoO}_{2} \mathrm{Co}$ (Salen) (DMSO)	876	532	7
$\mathrm{CrO}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$	1012	522,496	6
$\left(\mathrm{Fe}(\mathrm{EDTA})\left(\mathrm{O}_{2}\right)\right)^{3-}$	824	-	6
(VO(O) ($\mathrm{H} \mathrm{O}^{(0)}$ (bipicoline) $)^{-}$	839	610-570	16
$\left(\mathrm{NbF}_{5} \mathrm{O}_{2}\right)^{2-}$	955	900,880	This work

Fig. 4. π-bonding involved in $\mathrm{NbF}_{5} \mathrm{O}_{2}{ }^{2-}$
pounds of the latter are known to belong to two different geometrical structures [11] viz, the trigonal-bipyramidal with $\mathrm{D}_{3 \mathrm{~h}}$ symmetry as in NbCl_{5} [12] and the tetragonalpyramidal with $\mathrm{C}_{4 \mathrm{v}}$ symmetry, as in NbF_{5} [13]. In the first, the equatorial $\mathrm{Nb}-\mathrm{X}$ bonds are shown to be shorter than those in the axial positions, but the situation is found to be reverse in the latter.

In the present case of $\mathrm{NbF}_{5} \mathrm{O}_{2}{ }^{2-}$ ion, the axial $\mathrm{Nb}-\mathrm{F}$ bonds are shorter than those in the equatorial positions which is similar to the case of NbF_{5}. On the other hand, we may further confirm the assignments for the $\mathrm{NbF}_{5} \mathrm{O}_{2}{ }^{2-}$ ion through closely considering the relative intensities of the observed bands of the present species and compare them with those reported assignments for NbF_{5} compound [14], e.g. the three strong Raman bands observed in the spectrum of $\mathrm{NbF}_{5} \mathrm{O}_{2}{ }^{2-}$ ion at 696,660 and $608 \mathrm{~cm}^{-1}$ should be associated with the different symmetric $\mathrm{Nb}-\mathrm{F}$
vibrations. These include $\nu_{(\mathrm{Nb}-\mathrm{F})}{ }^{\prime \prime} \nu_{(\mathrm{Nb}-\mathrm{F})}$ and $\left.\nu_{(\mathrm{Nb}-\mathrm{F})}\right)$ and described as $\mathrm{S}_{3}, \mathrm{~S}_{5}$ and S_{4} respectively. The remaining two $\mathrm{Nb}-\mathrm{F}$ vibrations S_{10} and S_{15} are associated with the antisymmetric motions and are assigned to the broad strong infrared band centred at $730 \mathrm{~cm}^{-1}$. There are two bands observed only in the infrared spectrum with medium intensities at 481 and $497 \mathrm{~cm}^{-1}$. These bands are tentatively assigned to the two deformation modes; $\nu_{(\mathrm{F}, \mathrm{Nb} 0)}$ and $\left.\nu_{(\mathrm{FNb}} \mathrm{O}\right)$ described as S_{12} and S_{17} respectively. Such vibrational motions are expected to be weak in the Raman spectrum.

The two strong Raman bands observed at 195 and 215 cm^{-1} may be assigned to the $2 \mathrm{~A}_{1}$ deformational modes, $\left.\nu_{\left(\mathrm{F}^{\prime} \mathrm{Nb} \mathrm{F}\right.}{ }^{\prime \prime}\right)$ and $\left.\nu_{(\mathrm{F} \mathrm{Nb} \mathrm{F}}{ }^{\prime \prime}\right)$, and described as S_{7} and S_{6}, respectively.

Finally, there are number of bands assigned to overtone and combination bands. The weak Raman band at $380 \mathrm{~cm}^{-1}$ is assigned to the overtone $2 \nu_{7}$. The three infrared bands at 1195, 1450 and $1630 \mathrm{~cm}^{-1}$ are too high to be assigned as fundamentals. The first two are assigned to a combination and overtone frequencies respectively. This is illustrated in Table 2. The broad band at $1630 \mathrm{~cm}^{-1}$ is mainly characterized to the free water.

REFERENCES

1. M.M.T. Khan and A.E. Martell, Homogeneous catalysis by metal complexes, Ch. 2. (Academic Press, New York, London 1974).
2. F.C. Leavitt, T.A. Mauel and F. Johnson, J. Am. Chem. Soc., 81, 3163 (1959).
3. F.C. Leavitt, T.A. Manuel, F. Johnson, L.U. Matternas and D.S. Lehman, J. Am. Chem. Soc., 82, 5099 (1960).
4. R. Stomberg, Acta Chem. Scand., A 34, 193 (1980).
5. Idem, Ibid, A 35389 (1981).
6. R.E. Hester and E.M. Nour, J. Raman Spect., 11, 35 (1981);11,39 (1981); 11, 59 (1981).
7. Idem, Ibid, 11, 43 (1981); 11, 49 (1981); 11, 64 (1981).
8. S. Califanon, Vibrational States, (John Wiley and Sons, New York' 1976); E.B. Wilson, J.C. Decius and P.C. Cross, Molecular Vibrations (Mc Graw-Hill, New York, 1955).
9. G.A. Ozin and D.J. Reynolds, Chem. Commun., 884 (1969).
10. O.L. Keller and A. Chetham-Strode, Inorg. Chem., 5, 367 (1966).
11. A.R. Rossi and R. Hofmann, Inorg. Chem., 14, 365
(1973).
12. H. Skinner and L. Sutton, Trans. Faraday Soc, 36, 668 (1940); L. Nisel'son, A. Pustil'nik and T. Sokolova, Russ. J. Inorg. Chem., 9, 574 (1964).
13. A.J. Edwards, J. Chem. Soc., A, 3714 (1964).
14. N. Acquista and S. Abramowitz, J. Chem. Phys., 56, 5221 (1972).
15. R.L. Miller and D.F. Hornig, J Chem. Phys., 34, 265 (1961).
16. F. Offner and J. Dehand, Compt. Rend., 273, C 50 (1971).

[^0]: * Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt:
 ** National Centre for Radiation Research and Technology, Nasr City, P.O. Box, 29, Cairo, Egypt.

