# LAND BASED POLLUTION AND THE MARINE ENVIRONMENT OF KARACHI COAST 

M. Arshad Ali Beg, S. Naeem Mahmood, Sitwat Naeem and A.H.K. Yousufzai<br>PCSIR Laboratories, Karachi-39, Pakistan.

(Received May 2, 1984)
Surveys were carried out to assess the degree of pollution caused by the discharge of industrial and municipal effluents through Lyari river into the coastal areas of Karachi, initially between January and December in 1980 at monthly intervals and during 1981-82 at quarterly intervals. Several chemical parameters have been used to evaluate the quality of Lyari discharge and of the sea water. It is found that the former, being strong sewage is the major source of pollution in the Manora Channel.

The healthy growth of mangroves on the one hand and widespread pollution by Lyari effluents which supplies organic nutrients over the entire Manora Channel suggests that an ecological balance has been arrived at and the channel presents itself as a dynamic ecosystem receiving nutrients from Lyari and distributing and spilling it all over by tidal action.

The high bicarbonate content of the beaches is suggested to be due to air pollution on shore.

## INTRODUCTION

It has been stated in earlier papers[1-5] that Lyari which becomes a perennial river when it enters the suburbs of Karachi, is an open drain from both chemical and microbiological point of view. The water flowing in it originates initially from discharge of domestic sewage and subsequently of industrial effluents. The latter is discharged by industries located in the SITE (Sind Industrial Trading Estate) area through natural channels which used to be dry in the past.

SITE covers an area of about 4,000 acres. It has approximately 300 major industries and almost three times as many small units. $60 \%$ of these enterprises are textile mills while the others deal with chemicals, detergents, vegetable oils, beverages, food products, iron and steel etc.

Lyari river finally discharges its effluents into Manora Channel. As may be noted from the accompanying map, the last named is an enclosed channel from where the water is not easily flushed out. The polluted water discharged by the river remains stagnant during low tide. This process keeps polluting the south-eastern creeks. Furthermore, since the currents move clockwise, the outgoing channel water contaminates the outer region. For at least three months during the north-east monsoon when the currents move anticlockwise, the outgoing water may also be carried towards Manora, Sandspit, Hawkesbay and Paradise Point which are the main picnic spots.

Previous papers in the series[1-5] have shown that the water flowing through Lyari is a mixture of raw sewage and
untreated industrial effluents. It was pointed out that the contamination is quite extensive in that it has endangered the marine environment, in general, and has seriously deteriorated the quality of salt at the salt works located along one of the channels of the Lyari delta.

## METHODOLOGY

Grab samples for the analysis of physical and chemical properties were collected at monthly intervals in 1980 and at quarterly intervals in 1981-82, from eight sampling points described as under:

| Sampling <br> pionts | Location |
| :---: | :--- |
| I | II |
| III | Lyari end |
| IV | Coastal pump, Gulbai Salt works |
| Coastal pump, Luxmi Salt works |  |
| V | Coastal pump, Habib Ocean Salt |
|  | Works |
| VI | Opposite Sandspit beach (near |
| VII | Hut No. 15). |
|  | Sandspit Jetty |
| VIII | Sandspit beach (Opposite Hut No. |
| N-15). |  |
| Sandspit beach (Opposite Jetty) |  |

The selection of sampling points was based on accessibility and was arranged so as to cover the maximum area affected by the effluent from Lyari.

Measurements of physical and chemical properties were conducted in the Laboratory, and some of them were recorded on the spot, by standard methods [6-7].

Tables 1 to 8 show the physical and chemical analysis of samples from different points at different intervals.

Table 1. Average analysis of Lyari water flowing into sea. Sampling point I.

| Characteristics/ |  |  |  |
| :--- | :---: | :---: | :---: |
| Constituents | 1980 | 1981 | 1982 |
| pH |  |  |  |
| Stability | Fail | Fail | Fail |
| Density | 0.9988 | 0.9981 | 0.9978 |
| Total solids (TS) | $4,418 \mathrm{ppm}$ | $3,705 \mathrm{ppm}$ | $2,397 \mathrm{ppm}$ |
| Volatile matter |  |  |  |
| in TS | 219 ppm | 198 ppm | 137 ppm |
| Total halides | $1,710 \mathrm{ppm}$ | $1,583 \mathrm{ppm}$ | 775 ppm |
| Sulphates | 845 ppm | 608 ppm | 490 ppm |
| Bicarbonates | 550 ppm | 450 ppm | 380 ppm |
| Calcium | 162 ppm | 137 ppm | 97 ppm |
| Magnesium | 82 ppm | 60 ppm | 48 ppm |
| Sodium | 750 ppm | 580 ppm | 400 ppm |
| Potassium | 51 ppm | 36 ppm | 30 ppm |
|  |  |  |  |

Table 2. Average analysis of sea water at Gulbai coastal pump. Sampling point No. 2.

| Characteristics/ |  |  |  |
| :--- | :---: | :---: | :---: |
| Constituents | 1980 | 1981 | 1982 |
| pH | 7.5 | 7.7 | 7.8 |
| Stability | F | $\mathrm{F} / 4 \mathrm{hr}$ | $\mathrm{F} / 24 \mathrm{hr}$ |
| Density | 1.026 | 1.029 | 1.030 |
| Total solids (TS) | $46,426 \mathrm{ppm}$ | $51,527 \mathrm{ppm}$ | $56,139 \mathrm{ppm}$ |
| Volatile matter |  |  |  |
| in TS | $6,638 \mathrm{ppm}$ | $7,231 \mathrm{ppm}$ | $8,672 \mathrm{ppm}$ |
| Total halides | $21,985 \mathrm{ppm}$ | $24,673 \mathrm{ppm}$ | $26,474 \mathrm{ppm}$ |
| Sulphates | $2,716 \mathrm{ppm}$ | $3,180 \mathrm{ppm}$ | $3,411 \mathrm{ppm}$ |
| Bicarbonates | 400 ppm | 400 ppm | 425 ppm |
| Calcium | 480 ppm | 400 ppm | 421 ppm |
| Magnesium | $1,819 \mathrm{ppm}$ | $2,043 \mathrm{ppm}$ | $2,085 \mathrm{ppm}$ |
| Sodium | $11,500 \mathrm{ppm}$ | $12,500 \mathrm{ppm}$ | $13,500 \mathrm{ppm}$ |
|  |  |  |  |

Table 3. Average analysis of sea water at Luxmi coastal pump. Sampling point No. 3 .

| Characteristics/ Constitutens | 1980 | 1981 | 1982 |
| :---: | :---: | :---: | :---: |
| pH | 7.6 | 7.8 | 7.9 |
| Stability | F | F | F |
| Density | 1.029 | 1.031 | 1.035 |
| Total solids (TS) | $54,687 \mathrm{ppm}$ | 55,934 ppm | 63,257 ppm |
| Volatile matter |  |  |  |
| in TS | 7,338 ppm | 7,625 ppm | 8,789 ppm |
| Total halides | 26,685 ppm | 26,956 ppm | 30,942 ppm |
| Sulphates | 3,559 ppm | 3,627 ppm | 4,246 ppm |
| Bicarbonates | 400 ppm | 425 ppm | 450 ppm |
| Calcium | 350 ppm | 386 ppm | 400 ppm |
| Magnesium | 1,995 ppm | 2,115 ppm | 2,215 ppm |
| Sodium | 13,460 ppm | $13,665 \mathrm{ppm}$ | 15,500 ppm |
| Potassium | 900 ppm | 900 ppm | $1,000 \mathrm{ppm}$ |

Table 4. Average analysis of sea water at Habib ocean coastal pump. Sampling point No. 4

| Characteristics/ <br> Constitutents | 1980 | 1981 | 1982 |
| :--- | :---: | :---: | :---: |
| pH | 7.6 | 7.7 | 7.9 |
| Stability test | $\mathrm{F} / 7$ days | $\mathrm{F} / 7$ days | $\mathrm{F} / 5$ days |
| Density | 1.026 | 1.027 | 1.027 |
| Total solids (TS) | $46,992 \mathrm{ppm}$ | $48,422 \mathrm{ppm}$ | $49,685 \mathrm{ppm}$ |
| Volatile matter |  |  |  |
| in TS | $6,444 \mathrm{ppm}$ | $6,940 \mathrm{ppm}$ | $7,656 \mathrm{ppm}$ |
| Total halides | $22,194 \mathrm{ppm}$ | $22,387 \mathrm{ppm}$ | $22,834 \mathrm{ppm}$ |
| Sulphates | $3,160 \mathrm{ppm}$ | $3,359 \mathrm{ppm}$ | $3,438 \mathrm{ppm}$ |
| Bicarbonates | 350 ppm | 350 ppm | 365 ppm |
| Calcium | 385 ppm | 400 ppm | 400 ppm |
| Magnesium | $1,605 \mathrm{ppm}$ | $1,687 \mathrm{ppm}$ | 1,780 |
| Sodium | $11,800 \mathrm{ppm}$ | $12,000 \mathrm{ppm}$ | $12,000 \mathrm{ppm}$ |
| Potassium | 760 ppm | 800 ppm | 900 ppm |
|  |  |  |  |

## RESULTS

Sampling point I is located towards the end of SITE area whereafter Lyari splits into three streams. Point II, III and IV represent caostal pumps of the salt works situated on the Manora Channel and one of the delta streams of the
river flows close to them. V and VI are points located on the enclosed beach of Manora Channel. The latter receives water from Lyari in the east and from the sea only at high tide. Sampling points VII and VIII are situated on the open sea and they are not directly linked with Lyari. The only chance of intermixing of the waters on the two sides is that when the swelling high tides push the collected water out of the stagnant pools in the Manora Channel.

The water samples collected may therefore be categorised in four types: (i) Lyari water comprising domestic and industrial waste, (ii) In-put for salt works, (iii) Manora

Channel water representing the sewage mixed stagnant water in the enclosed area and (iv) water from the open beaches.
pH of the water samples for point I varies between 6.9 and 7.3, for II, III and IV it varies between 7.5 and 7.9 while for V to VIII it is 7.5 to 7.8 which is that of near shore water.

It may be observed from Table I that pH of the water at point I i.e., Lyari effluent, is gradually getting lower with the passage of time. This may either be due to the effects of dilution with less polluted water or interaction with in-

Table. 5. Average analysis of sea water at opposite sandspit beach (near Hut No. 15)
Sampling point No. 5

| Characteristics/ | Jan-April | May-August | Spe.-Dec. |  | 1981 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Constitutents | 1980 | 1980 | 1980 |  | 1982 |
| pH | 7.8 | 7.6 | 7.8 | 7.7 | 7.8 |
| Stability test | $\mathrm{F} / 8 \mathrm{hr}$ | $\mathrm{F} / 12 \mathrm{hr}$ | $\mathrm{F} / 8 \mathrm{hr}$ | $\mathrm{F} / 8 \mathrm{hr}$ | $\mathrm{F} / 6 \mathrm{hr}$ |
| Density | 1.025 | 1.024 | 1.024 | 1.024 | 1.025 |
| Total solids (TS) | $45,942 \mathrm{ppm}$ | $43,224 \mathrm{ppm}$ | $44,180 \mathrm{ppm}$ | $43,995 \mathrm{ppm}$ | $45,452 \mathrm{ppm}$ |
| Volatile matter in TS | $7,465 \mathrm{ppm}$ | $5,537 \mathrm{ppm}$ | $5,810 \mathrm{ppm}$ | $5,976 \mathrm{ppm}$ | $6,184 \mathrm{ppm}$ |
| Total halides | $21,290 \mathrm{ppm}$ | $20,589 \mathrm{ppm}$ | $20,998 \mathrm{ppm}$ | $20,882 \mathrm{ppm}$ | $21,522 \mathrm{ppm}$ |
| Sulphates | $2,864 \mathrm{ppm}$ | $2,724 \mathrm{ppm}$ | $2,871 \mathrm{ppm}$ | $2,734 \mathrm{ppm}$ | $2,878 \mathrm{ppm}$ |
| Bicarbonates | 260 ppm | 270 ppm | 230 ppm | 240 ppm | 250 ppm |
| Calcium | 490 ppm | 480 ppm | 480 ppm | 480 ppm | 480 ppm |
| Magnesium | $1,653 \mathrm{ppm}$ | $1,838 \mathrm{ppm}$ | $1,654 \mathrm{ppm}$ | $1,665 \mathrm{ppm}$ | $1,678 \mathrm{ppm}$ |
| Sodium | $11,500 \mathrm{ppm}$ | $11,000 \mathrm{ppm}$ | $11,300 \mathrm{ppm}$ | $11,250 \mathrm{ppm}$ | $11,700 \mathrm{ppm}$ |
| Potassium | 400 ppm | 380 ppm | 390 ppm | 390 ppm | 400 ppm |
|  |  |  |  |  |  |

Table 6. Average analysis of sea water at Sandspit Jetty. Sampling point No. 6

| Characteristics/ | Jan-April | May-August | Sep.-Dec. |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Constituents | 1980 | 1980 | 1980 | 1981 | 1982 |
| pH | 7.8 | 7.6 | 7.8 | 7.7 | 7.8 |
| Stability test | $\mathrm{F} / 8 \mathrm{hr}$ | $\mathrm{F} / 12 \mathrm{hr}$ | P | P | $\mathrm{F} / 6 \mathrm{hr}$ |
| Density | 1.025 | 1.024 | 1.024 | 1.024 | 1.025 |
| Total solids (TS) | $46,566 \mathrm{ppm}$ | $43,310 \mathrm{ppm}$ | $44,250 \mathrm{ppm}$ | $44,026 \mathrm{ppm}$ | $45,548 \mathrm{ppm}$ |
| Volatile matter in TS | $7,545 \mathrm{ppm}$ | $5,774 \mathrm{ppm}$ | $5,884 \mathrm{ppm}$ | $5,987 \mathrm{ppm}$ | $6,215 \mathrm{ppm}$ |
| Total halids | $21,324 \mathrm{ppm}$ | $20,612 \mathrm{ppm}$ | $21,017 \mathrm{ppm}$ | $20,446 \mathrm{ppm}$ | $21,554 \mathrm{ppm}$ |
| Sulphates | $2,880 \mathrm{ppm}$ | $2,728 \mathrm{ppm}$ | $2,865 \mathrm{ppm}$ | $2,787 \mathrm{ppm}$ | $2,884 \mathrm{ppm}$ |
| Bicarbonates | 260 ppm | 280 ppm | 230 ppm | 240 ppm | 250 ppm |
| Calcium | 490 ppm | 480 ppm | 480 ppm | 470 ppm | 480 ppm |
| Magnesium | $1,675 \mathrm{ppm}$ | $1,625 \mathrm{ppm}$ | $1,662 \mathrm{ppm}$ | $1,668 \mathrm{ppm}$ | $1,680 \mathrm{ppm}$ |
| Sodium | $11,600 \mathrm{ppm}$ | $11,000 \mathrm{ppm}$ | $11,300 \mathrm{ppm}$ | $11,200 \mathrm{ppm}$ | $11,700 \mathrm{ppm}$ |
| Potassium | 400 ppm | 380 ppm | 390 ppm | 390 ppm | 400 ppm |
|  |  |  |  |  |  |

Table 7. Average analysis of sea water at Sandspit Beach (opposite Hut No. N-15) Sampling point No. 7.

| Characteristics/ | Jan-April | May-August | Sep.-Dec. |  | 1981 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Constituents | 1980 | 1980 | 1980 | 1982 |  |
| pH |  |  |  |  |  |
| Stability test | 7.7 | 7.5 | 7.8 | P | 7.7 |
| Density | P | P | P | P |  |
| Total solids (TS) | 40,023 | 1,023 | 1.023 | 1.023 | 1.024 |
| Volatile matter in TS | $4,360 \mathrm{ppm}$ | $40,262 \mathrm{ppm}$ | $40,440 \mathrm{ppm}$ | $40,760 \mathrm{ppm}$ | $42,835 \mathrm{ppm}$ |
| Total halides | $20,866 \mathrm{ppm}$ | $4,112 \mathrm{ppm}$ | $3,600 \mathrm{ppm}$ | $3,365 \mathrm{ppm}$ | $4,675 \mathrm{ppm}$ |
| Sulphates | $2,885 \mathrm{ppm}$ | $2,575 \mathrm{ppm}$ | $20,643 \mathrm{ppm}$ | $20,788 \mathrm{ppm}$ | $20,920 \mathrm{ppm}$ |
| Bicarbonates | 230 ppm | 220 ppm | $2,658 \mathrm{ppm}$ | $2,672 \mathrm{ppm}$ | $2,724 \mathrm{ppm}$ |
| Calcium | 480 ppm | 460 ppm | 220 ppm | 230 ppm | 230 ppm |
| Magnesium | $1,655 \mathrm{ppm}$ | $1,476 \mathrm{ppm}$ | 470 ppm | 470 ppm | 480 ppm |
| Sodium | $11,500 \mathrm{ppm}$ | $10,500 \mathrm{ppm}$ | $11,525 \mathrm{ppm}$ | $1,500 \mathrm{ppm}$ | $11,000 \mathrm{ppm}$ |
| Potassiuum | 390 ppm | 380 ppm | 390 ppm | $1,682 \mathrm{ppm}$ |  |
|  |  |  | 390 ppm | $3,500 \mathrm{ppm}$ |  |

Table 8. Average analysis of sea water at Sandspit Beach (opposite Jetty). Sampling point No. 8.

| Characteristics/ | Jan-April | May-August | Sep.-Dec. |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Constituents | 1980 | 1980 | 1980 | 1981 | 1982 |
| pH |  |  |  |  |  |
| Stability test | 7.7 | 7.5 | 7.8 | 7.7 | 7 |
| Density | 1.024 | P | P | P | 1.7 |
| Total solids (TS) | 42.103 ppm | 40.324 ppm | $40,451 \mathrm{ppm}$ | $40,826 \mathrm{ppm}$ | $42,960 \mathrm{ppm}$ |
| Volatile matter in TS | $4,429 \mathrm{ppm}$ | $4,230 \mathrm{ppm}$ | $3,686 \mathrm{ppm}$ | $3,524 \mathrm{ppm}$ | $4,790 \mathrm{ppm}$ |
| Total halides | $20,875 \mathrm{ppm}$ | $20,596 \mathrm{ppm}$ | $20,685 \mathrm{ppm}$ | $20,796 \mathrm{ppm}$ | $20,938 \mathrm{ppm}$ |
| Sulphates | $2,910 \mathrm{ppm}$ | $2,536 \mathrm{ppm}$ | $2,680 \mathrm{ppm}$ | $2,678 \mathrm{ppm}$ | $2,740 \mathrm{ppm}$ |
| Bicarbonates | 230 ppm | 220 ppm | 220 ppm | 230 ppm | 235 ppm |
| Calcium | 480 ppm | 460 ppm | 470 ppm | 470 ppm | 480 ppm |
| Magnesium | $1,668 \mathrm{ppm}$ | $1,490 \mathrm{ppm}$ | $1,534 \mathrm{ppm}$ | $1,566 \mathrm{ppm}$ | $1,695 \mathrm{ppm}$ |
| Sodium | $11,500 \mathrm{ppm}$ | $10,500 \mathrm{ppm}$ | $11,000 \mathrm{ppm}$ | $11,000 \mathrm{ppm}$ | $11,500 \mathrm{ppm}$ |
| Potassium | 390 ppm | 380 ppm | 390 ppm | 390 ppm | 400 ppm |
|  |  |  |  |  |  |

dustrial effluents so as to precipitate out some pollutants and to give rise to lower concentration.

The slight rise in pH at points II, III and IV may have to be judged in the perspective of high total solids which is necessary for the input to salt works. Sewage brings in considerable quantities of bicarbonates which in the process of concentration as desired for salt works would increase the alkalinity. It may also be noted that pH of the sea water collected from open and enclosed beaches is lower than for standard sea water[8].

All the samples collected from points I, II and III fail the putrescibility test. Samples from point IV are slightly better than those from points II and III perhaps because this point is located at a fair distance from the deltaic channel.

Samples collected from point V failed during 1980, 1981 and 1982 while that from VI failed during 1980 and 1982 and passed during 1981. This might be indicative of the flushing process which is easier at the former point. It may be seen from the location map that point VI is


Table 9. Typical variations in the properties of coastal waters.

| Characteristic/ <br> Constitutents | Standard <br> sea water | Point loma <br> San Diego | Brazosport | Rantam river <br> New Jersy | Karachi harbour <br> (average) |
| :--- | ---: | :---: | :---: | :---: | :---: |
| pH | 8.2 | 8.1 | 8.0 | 7.0 | 7.6 |
| Total dissolved |  |  |  |  |  |
| solids (TDS) (ppm) | 35,000 | 33,400 | 36,250 | 24,000 | 37,000 |
| Sulphate | 2,712 | 2,610 | 2,900 | 1,960 | 2,700 |
| Chloride (ppm) | 19,350 | 18,920 | 20,750 | 12,400 | 20,500 |
| Bicarbonate (ppm) | 142 | 104 | 95 | 84 | 200 |
| Calcium (ppm) | 413 | 398 | 430 |  | 480 |
| Magnesium (ppm) | 1,294 | 1,280 | 1,400 | 4,000 | 1,450 |
|  |  | - | 10,700 | as CaCO |  |
| Sodium (ppm) | 10,760 | - | - | 11,500 |  |
| Potassium (ppm) | 387 | - | 445 | - | 400 |

accessible to high tides through a wider channel compared with point V which is not so favourably located. Density of the samples from point I show slight decrease from 1980 to 1982 which as suggested earlier may be due to dilution. Samples from point II, III and IV show higher densities in
comparison with those from the river. These are expected to have a slightly higher concentration than sea water since they represent the input for the salt works. Samples from V and VI show higher densities than those from points VII and VIII since the water at the former points is stagnant in

Table 10. Analysis of Brine from different salt works [4].

| Characteristics/ Constituents | Habib Ocean Ind.Ltd. pump | Habib Ocean Ind. Ltd. pan | Nasarwanji Coastal pump | Nasarwanji pan | Luxmi coastal pump | Luxmi pan | Gulbai pump | Gulbai <br> pan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pH | 8.5 | 8.5 | 7.0 | 9.0 | 8.0 | 8.5 | 8.5 | 9.0 |
| Temperature (C) | 28.5 | 35.5 | 29.5 | 35.5 | 29.5 | 30.0 | 36.0 | 36.0 |
| Density | 1.139 | 1.276 | 1.020 | 1.169 | 1.037 | 1.202 | 1.069 | 1.241 |
| Putrescibility | Fails | Pass | Fails | Fails | Fails | Pass | Fails | Pass |
|  | 7 days |  | 12 hrs | 5 days | 5 days |  | 3 hrs |  |
| Total halides (ppm) | 116131 | 186165 | 24882 | 128545 | 31914 | 157797 | 54963 | 184392 |
| Sulphates (ppm) | 13647 | 21854 | 3029 | 34543 | 4321 | 21220 | 7807 | 33794 |
| Total solids (ppm) | 232004 | 484580 | 46156 | 317140 | 60068 | 402808 | 110810 | 463300 |
| Volatile matter in TS | 17.2\% | 42.18\% | 15.5\% | 34.56\% | 16.96\% | 34.9\% | 17.33\% | 31.01\% |
| Calcium (ppm) | 1603 | 601 | 400 | 801 | 400 | 601 | 800 | 400 |
| Magnesium (ppm) | 7052 | 20550 | 1824 | 20915 | 2188 | 20550 | 4742 | 26265 |
| Sodium (ppm) | 56000 | 43000 | 12000 | 46000 | 16000 | 59000 | 29000 | 72000 |
| Potassium (ppm) | 3000 | 7000 | 1000 | 7000 | 1000 | 8000 | 2000 | 10000 |
| Bicarbonates (ppm) | 610 | 2440 | 610 | 915 | 610 | 1220 | 610 | 1220 |

contrast with open beaches.
Total solids of the samples collected from point I show a regular decrease from 1980 to 1982. The average total solids in 1980 were $4,418 \mathrm{ppm}$ while the average total solids in 1982 were $2,397 \mathrm{ppm}$. The interaction of different components of municipal wastes and industrial effluents, as suggested earlier in the case of lowering of pH may be one of the factors contributing to dilution or lowering in the dissolved solids content. The total solids content of samples collected from points II, III and IV is higher than those from others. This is the result of natural evaporation during the process of storing and pumping as required for the salt works. The concentration of total solids on the two sides of the land separating stagnant from the open beaches is different. The content noted at points $V$ and $V I$ is higher than at VII and VIII. On an average the concentration of total solids in the sample from the beaches are also higher than for an average open sea water sample. All the other constitutents e.g., total halides, sulphates, calcium, magnesium, sodium and potassium are as usual in conformity with total solids.

Estimation of volatile matter bynoting the loss at $500^{\circ} \mathrm{C}$ has been taken as an index of organic matter, the same continues to be the main source of pollution for the salt works [4,5]. It has been found to be slightly high for sampling points: II, III and IV which are located near the river channels. The maximum organic matter $8,789 \mathrm{ppm}$ was estimated at sampling point III in 1982.

## DISCUSSION

The Lyari water, according to the above observations is diluted to some extent but it is still strong sewage by chemical and biological standards and pollution level continues to be high. The microbiological studies, reported separately [9], indicate a high Faecal Counts (918/dl) on the beaches and that the Faecal Counts (MPN) in the enclosed area is on an increase.

The entire channel area excepting the one close to Lyari has flourishing growth of mangrove which in spite of the pollution load continues to remain there. The sewage and wastes discharged by Lyari are apparently responsible for nutrient enrichment and eutrophication and hence for the growth of mangroves. The water entering at high tides fills the backwaters and creeks of the harbour, the mudflats and intake channels of salt works and the mangroves on the east and north-west extremes of the harbour. There is, therefore, a restoration of salt balance, if at all it is disturbed by the pollution load, thus providing a balanced eco-system.

The salt works are accessible through Chari Kund channel which is navigable also during low tide. Two of the deltaic streams of Lyari pour their effluents into the wider section of this channel while another stream by-passes the salt works. The latter is responsible for contaminating the input of the salt works. Some but not all of its water also reaches point IV and V since the samples there have been
found to be less contaminated at times.
It may be seen that the volatile matter constitues approximately $4-6 \%$ of total solids in the Lyari effluent while it is $13-15 \%$ in the input of salt works and $12-16 \%$ on the enclosed beaches but is $9-11 \%$ for the open beaches. The volatile matter as estimated may not be truly representative of the carbonaceous material since it has been dtermined by observing theloss in weight at $500^{\circ} \mathrm{C}$ and it is possible that it would include oxidizable matter of all kind. When gauged in the light of the failure of samples in the putrescibility test and the presence of healthy growth of mangroves, it seems reasonable to believe that the total solids should contain a reasonable quantity of organic matter. The data, however, suggest that the organic matter as received from Lyari is deposited in the Manora channel and is mainly responsible for the nutrient balance and eutrophication. The backwash at high tides and the Lyari flow seem to maintain a dynamic ecological equilibrium in the Manora channel whose ionic concentration is slightly higher than the open beach which is again influenced by the outflow from the former during times when the tides start receding. A high content of organic matter in nearshore and esturine waters receiving waste discharges is not uncommon [8]. However, the land based pollution seems to be generally contained in the Manora channel.

The other chemical ingredients contributed by Lyari appear to be duly diluted since the analyses of sea water shaws that it is not significantly affected by waste water. The sea water is already at least 15 times more concentrated than Lyari discharge. Moreover, the former is a highly buffered system and is susceptible to change only if the volume of the diluent is large. In the case of Lyari it is only of the order of 100 to 120 mgd . The analysis of samples, however, corresponds to concentrated sea water as is supported by their density and a comparison with density of brine [4].

It may be seen from the Tables showing analysis of sea water that its pH as well as bicarbonate content do not correspond to what is known as standard sea water. On the average the pH is 7.5 instead of 8.2 and bicarbonate 200 ppm instead of 140 . This is possible if additional carbon dioxide is available nearshore. This would give rise to a shift in equilibrium as follows:

$$
\begin{gathered}
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3} \\
\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \\
\mathrm{HCO}_{3} \rightleftharpoons \mathrm{CO}_{3}^{-}+\mathrm{H}^{+}
\end{gathered}
$$

In earlier reports on effects of air pollution on the Karachi environment [1,10], it has been indicated that the increase in the number of vehicles and increased use of fossil fuel by industries and homes has given rise to generation of carbon dioxide beyond the absorption capacity of nearshore water. Since ocean is the sink for $\mathrm{CO}_{2}$ it is reasonable to assume that the slight but siignificant fall in pH an also higher bicarbonate content of nearshore water is because of the onshore activity.

## REFERENCES

1. M.A.A. Beg, S.N. Mahmood, and A.H.K. Yousufzai, Proc. Pak.Acad.Sci., 12, 115 (1975).
2. M.A.A. Beg, S.N. Mahmood, and A.H.K. Yousufzai, Proc.Pak.Acad.Sci. 15, 11 (1978).
3. M.A.A. Beg, S.N. Mahmood, and A.H.K. Yousufzai, Survye of Liquid Effluents flowing through Lyari, Malir and Sind Industrial Area, Karachi , presented at CENTO Coordinators' Meeting, Ankara, 1978.
4. M.A.A. Beg, S.N. Mahmood, and A.H.K. Yousufzai, Effeect of the Polluted Lyari River on the Coastal Environment, Proc. of National and Regional Seminar for the Portection of marine Environment and Related Eco-system, 1979, Ed. M.A.A. Beg.
5. M.A.A. Beg, M.A. Siddiqui, R.B. Qadri, N. Basit, F. Siddiqui, and I. Mahmood, Proceedings of the National and Regional Seminar for the Protection of Marine Environment and Related Eco-systems, 1979, Ed. M.A.A. Beg.
6. Analaysis of Raw, Potable and Waste Waters (Department of the Environment, HMSO London, 1972).
7. Methods of Chemical Analysis of Water and Waste (EPA (USA) 600/4-79-020, March 1979).
8. W.F. Mcllhenny, and M.A. Zeitoun, A Chemical Engineer's Guide to Sea Water, (Chem. Eng. 251, Nov. 17, 1969).
9. M.A.A. Beg, N. Basit, F. Siddiqui I. Mahmood and M.A. Siddqui Studies on the Biological Contamination of the Coastal Environment of Karachi (These Proceedings).
10. M.A.A. Beg, Proceedins of the Symposium "For Every Child a Tree," held on Human Environment Day, 1982, PASSP, Karachi.
