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INTERACTION OF MHD SHOCKS
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A plane MHD shock wave of arbitrary strength meets a slender body moving at supper-true-sonic
speed in the opposite direction. The interaction between the given shock wave and the weak shock

attached to the slender body is studied for aligned fields for axisymmetrical flow and for both aligned
and transverse fields in the two-dimensional case. Formal solutions for the linearized flow in the interaction
region are obtained by the use of integral transforms.

INTRODUCTION

Suppose a plane shock wave of arbitrary strength meets
a slender body which is moving in the opposite direction
at supersonic speed. Since the slender body has a weak
attached shock wave, the problem ultimately involves an
interaction between the two shock waves. This problem,
in different contexts, has been considered by many
authors, using a variety of approaches. In particular,
Arora [1], whose paper may be consulted for additional
references, used integral transforms to obtain an analytical
solution to a linearized formulation of the stated problem
for slender axisymmetrical bodies and two-dimensional
thin airfoils.

The purpose of the present paper is to extend Arora's
approach to the case of a perfectly conducting fluid. For
the axisymmetric case, the problem of an aligned magnetic
field is considered, so that the shock transition relations are
merely the usual ones from conventional gas dynamics,
supplemented by the continuity of the normal component
of the magnetic field across the shock.

For the problem of a two-dimensional airfoil, both ali-
gned and transverse magnetic fields are considered. Super-
position of these solutions would, of course, yield the
behaviour for an arbitrary orientation of the applied mag-
netic field. Structurally, the solution for the aligned fields
case is identical to the solution for the axisymmetric case.
With a transverse magnetic field, howev.r, the normal
magnetohydrodynamic shock conditions ~ust be uti-
lized. Althoughh the perturbed form of these relations
has been given previously [2] , a derivation in a form more

. suitable for the present problem is given in Appendix C.
In Arora's analysis, the ultimate differential equations

for the perturbed pressure transforms are second-order

ordinary differential equations with constant though literal
(the transform parameters) coefficients, and these may be
solved exactly, so that the transforms may be inverted. In
the present paper, the coupling of magnetic and fluid dy-
namical effects leads to similar equations, but these are of
the fourth-order. Consequently, fourth-order algebraic
equations with literal coefficients must be solved in order
to obtain the solutions of the ordinary differential equa-
tions. Although there are standard techniques for solving
such algebraic equations, the resulting expressions for the
solutions are quite involved; thus, attention will be focused
on special values for two of the parameters which measure
the strength of the incident shock and the strength of the
applied magnetic field. Complete and exact solutions are
given for the pressure perturbation transforms for this
special case; the corresponding quartic algebraic equations
are solved in Appendices A and B. The final solutions,
valid for arbitrary bodies or airfoils consistent with the
basic assumptions, are given as formal inversions, since an
exact inversion seems unlikely.

The physical formulation of the problem is as follows.
A plane shock of arbitrary strength moves with super-true-
sonic velocity V in thedirection of the positive x-axis of a
cylindrical coordinate system into a uniform region (0)
of fluid at rest; the uniform velocity in the region (1)
behind the shock is U. At time t = 0, the shock strikes the
apex of an axisymmetric body (insulator) of infinite length
moving in the opposite direction with super-true-sonic
speed W. The region (2) behind the attached shock is uni-
form. Thus, when t 'S 0, the flow pattern consists of three
uniform regions; region (0) in front of and region (1) be-
hind the impinging shock; region (0) in front of and region
(2) behind the attached shock.

For t > 0, the shocks intersect, and the problem is to
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determine the flow, within a linearized framework, in
region (l) behind the intersecting shocks. A cylindrical
coordinate system (r, 8 x), fixed relative to the undis-
turbed flow behind the incident shock will be employed. It
is assumed that, the diffracted shock is only slightly deflec-
ted from its undiffracted position and further meets the
body surface normally so that the fluid flow across the
shock will remain parallel to the surface. A diagram, illus-
trating the geometry of the reflected and diffracted waves,
of the flow pattern developed in the conventional case is
given in Aroraj I] , Fig.2. Qualitatively, the results will be
quite similar in the present case, but, since the analysis does
not depend on this diagram, it will not be included here.
In region(2), the solution is known from previous work as
an isentropic perturbation of an initially uniform flow,
while in region (1), the solution must be obtained as a non-
isentropic perturbation of an initially uniform flow.

With c the conventional sound speed, the physical
quantities defining the problem are M = V/co, the Mach
number of the shock, M' = W/co, the Mach number of the
body and r = f(X), the function defining the surface of the
body where X denotes the axial coordinate with origin at
the nose of the body. Magnetic parameters will be defined
in the body of the text.

Part I. Axisymmetric Flow

The Basic Equations.Niu: respect to an (r, 8 x) cylin-
dric-al coordinate system, the equations which govern the
unsteady axisymmetrical flow of an ideal, inviscid, per-
fectly conducting compressible fluid, subjected to an appli-
ed magnetic field B= (Bj , B2' B3) may be written as

P = exp [~S~-~s:u..o__ ] p 'Y
Cv (2.1)

(2.2)

(2.3)

(2.4)

p( _ B2B2X n'l
qt+uq +qq )+P ------~-(B -B

r x x Jl. Jl. Ix 3r) (2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

where p, p, s, so' 'Y,(u, 0, q), c, /J., b~ = B~ //J. p (i = 1,2,3),
t are, respectively, the pressure, density, specific entropy,
at some reference state, ratio of specific heat at constant
pressure cp and at constant volume cy' velocity vector, local
speed of sound, permeability, square of the Alfven speed
and time; the subscripts r, x and t denote, partial differen-
tiation in the radial and axial 'directions and with respect to
time. In the next section, these equations will be linearized

, in the neighourhood of an initially uniform flow for the
special case of aligned magnetic and velocity fields.

Linearized Equations of Motion. A formal lineariza-
tion of Eqs. (2.1) - (2.10) in the neighbourhood of an
initially uniform state with velocity zero (because of the
choice of the moving coordinate system) and only the
third component of the magnetic induction nonzero
leads to the following system of linear equations for the
perturbed flow

+q+s.+u=or r x (3.1)

P
r

2 -B- -B-
q + _ + b (~_ 3r)
t p 3 B3 B3

(3.2)

pu +1'=0
t x

(3.3)

Bit
q = 0~- x

(3.4)

(3.5)

(3.6)

(3.7)

B2t = 0, B2x = 0

where perturbations are denoted by a bar. Equation (3.8)
shows that 82 '= 0 since it was zero initially.

(3.8)
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Defining p/p=A, B3 /B3 =B, iJ/rp=P, q/c=Q, u/c=D
and ~=ct gives the system of equations

A + Q + D + ~ = 0£; r x T (3.9)

b 2 B

Q P 3 (~ _ B )
E; + r = ~ B3 r (3.10)

D + P =' 0t;, x (3.11)

o (3.12)

B +Q +~=Ot;, r r (3.13)

PE;, - At;, = 0

-B- S
B -(~ ... ._1_)

x B3 rB3

(3.14)

(3.15)

which may be combined to yield the following system of
coupled linear partial differential equations

Pxx
P
r+ - .•.
r + Brr

B
.•. .2:.) (3. 16j

r
+ Prr

Pr 2 BBee = P + - .•.m (B .•.B .•..2:.)
<,<, rr r xx rr r (3.17)

where m2 - bVc2 In the non-magnetic case, a single wave
equation for the pressure perturbation was obtained

The Initial and Boundary Conditions. For the present
problem the usual shock transition relations from conven-
tional gas dynamics apply with the addition of the conti-
nity of the component of the magnetic field normal to the
shock (i.e., B3) across the shock. With the subscripts 1 and
2 denoting, respectively, the flow behind and in front of
the shock, the perturbed form of the shock conditions may
be written as

u* .•.
(4.1)

(4.2)

(4.3)

(4.4)

together with

B = 0 (4.5)

where P;/rPo = P*, U2/V = u*, Q2/V = q* and 1/I(r,t)
denotes the displacement of the shock path from its
undisturbed position. With a different notation, the cons-
tants are defmed in Arora's paper, which may be consulted
for details. Alternatively, a derivation of the perturbed flow
of the shock relations for a magnetohydrodynamic shock
wave propagating into a moving fluid are given in Appendix
C; these equations include the usual gas dynamic conditions
as the special case obtained in the limite of vanishing mag-
netic field.

The shock conditions will be applied at the undisturbed
shock locus, x = Vt, which in the moving coordinate system
is

x=a~ (4.6)

where a = M CO/Cl -nl,M=V/cO,nl = U/Cl. Elimination
of 1/1and 1/It;from Eqs. (4.1) - (4.4) gives

D = ~1- [P + (L23 L31 _ L
21

) u* + (L3~ L23 - L22)P*] .
L23 L33 33

== (P - LS2 u* -. LS3 p*)/LS1 (4.7)

*Qt;, = L41 qt;, .•.

where
LS4 = L23/L42 (4.8)

In order to write the boundary conditions on the body
. surface, account must be taken of the solution in the insula-

tor. For the perturbed flow in front of the shock it has
been shown that the perturbed magnetic field, whose com-
ponents are a harmonic vector, vanishes in the insulator
[3,4,5] ; a simple extension of this reasoning shows that the
same situation will be true behind the shock. Continuity
shows that all magnetic field pertubrafions vanish on the
suface of thebody in the fluid behind the shock.

On the surface of the body, the boundary condition
for tangency of the flow may be written as

(4.9)

where r = f is the cross sectional radius of the body and
al = M'CO/Cl + nl, M' = W/c DC Using the second momentum
equation, Eq. (3.10), it follows that as r ~ 0,

r P + m2 r B ~ -a 2 F[x + a1£;]
r r 1 (4.10)
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where
F(A) = f(A) fll (A) + [ft (A)) 2

On the body surface along the shock,

rQ = a/[(a + a1)~] f ' [(a + a1)~],

So that using Eq. (4.8)

along the shock as r:..o Eq. (4.11) ensures that the flow
remains tangential to the body at the base of the shock.
Finally, all perturbations are to vanish at infinity, i.e. as
x +-00; r~, P, B and their derivatives vanish.

For the flow ahead of the shock, the perturbed flow
andperturbed magnetic field problems uncouple compeltely
[5,6]; thus, the perturbations at the shock may be written
as

h (S r)
*

J
F(e) deU - k1

[h2(e) _ S2;r2]1/2

°
k1

h (Br )

q* J
h(e) F(e) de

r [h2(e) _ s2r2] 1/2

°
k

p* 2 *
JC:"""U

1
(4.13)

(4. 12)

where k, = M'/M, k2 = (M')2, {32= k2 - 1 and h (i3r) =
(a + al)~ Br

Lorentz Transformation. In the non-magnetic case, the
governing equation for the pressure perturbation is a wave
equation, which is invariant under a Lorentz transformation
which transforms the shock path to a zero value for the
appropriate variable and facilitates the transform analysis.
The same transformation is applied in the present problem
in order to simplify the shock path representation; how-
ever, the governing system is not invariant under the trans-
formation. Thus, new independent variables are introduced
by

t: x-a ~
(l-ah 1/2

, II (S.I)

Using a circumflex to denote functions of the new variable,
Eqs. (3.16)-(3.17) are transformed into

P 2 ~ B
p p + p + - + m [Brr + -.E.] +nn zz rr r r

2 2 ~
m [Bzz 2a B + a B--2 - Zll nn

l-a
(5.2)

2 2
[a -m

2
] B

I-a zz
B +zn

2 2(l-a m )
1_a2

2 ~ Bm [B +-.E.]
rr r (5.3)

p
r

+-+rB
llll

p
rr

while the initial and boundary conditions for this system
become

n .::.0, P P = 0, Bn B = 0.
II

11>0, z <0, as z-+-oo, r-+oo,
" "B, P and their derivatives vanish. -

For n > 0, z < 0, as r -+ °
(5.4)

r P
r

2
+ m r (5.5)

2 1/2where a2 = (a+a1)/(1-a) ,a3 = (1+a a1)/(a+a1)

In terms of thenew independent variables, Eqs. (3.9),
(3.11), (3,14) yield the differential relation

~
[a 1 aQ
ar + r] an = ° (5.6)

Substitution of the shock conditions (4.7)-(4.8) into (5.6)
gives the following differential relation valid at the shock,
z=O

P +_l_p +
zn LS1 nll

p
(P .•. -.E.)

rr r
a
2

(l-a ) LS4

a L41 a 1 ~
2' 1/2 ("r + -r) "In(1-a ) 0 0 (5.7)
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Transforming thepertubation quantities u*:, q* and p*
[Eqs. (4.13)-(4.15)] into the new variablesand substituting
into Eq. (5 .7t gives the following second-order differential
condition for P valid at the shock z=O.

a2p 1 ap a2p
(~ + '- -) ,+ 2a ~ +
ClrL r ar oZ a~

f
~-a4r F[a2 e] de

[(~'_e)2 _ a 2 r2]1/2
o 4

where a4 = S/a2 and LSS = - (1 + M-2) (LS2 ki -

LS3 k2) + (L21 kl - L22 k2) a4
2 - (1 _ a2)1/2

LS4 L4I ki a2 a4
2.

From Eq. (4.11), it follows that at z 0
r P

r
-+LS6 F[a

2n] as r-+O

where L56 = (1- a 2) 1/ 2 L54 (a 1 - L41 k1) a 2 +

(5.8)

(5.9)

(L21 k1 - L22 k2)·

Finally, continuity of the component of the magnitic field
normal to the shock gives .

1\

B = 0 at z = 0 (5.10)

,
Thus, the problem is to solve the system of Eqs. (5.2)-

(5.3) subject to the subsidiary conditions given by Eqs.
(5.4), (5.8)-(5.10).

Analytic Solution. Equations (5.2)-(5.3), togther with
the associated subsidiary conditions, will be studied by the
successive application of Laplace and Hankel transforms.
Thus defining

.x'[p(z,r,nl] f: p(z,r,n) exp L-sri] dn = RI (z,r,s)

,![RICz,r,sl] = J: r RI(z,r,s) Jo(ar) dr = T1(z,a,s)

£[8] = R2C.z,r,s), ~[R2] = T2(z,a,s),

the Laplace transforms of Eqs. (5.2)-(5.3), together with
the initial conditions (5.4), give

2
m [R 2 R 2 2 ]"--2 2zz - as 2z + a s R2

I-a
(6.1)

22 2 2a(m -1) sR2z[a- -m ] R
2 2zz +

I-a
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R1r 2
R + - + m [R2lrr r rr

The transforms of Eqs (5.4), (5.5), (5.8) - (5.l0) give

z < 0, as z -+ _00, r -+ =,

Rl' R2 and their derivatives vanish.
z <'0, as r-+O,

aRI
z = 0, as r -+0, r ar-- -+ LS6 G(s)

z = 0, R2(z, r, s) °

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

where G(s) = £[F(a211)] and Ko(r s a4) is the modified
Bessel function of the second kind.

Application of the Hankel transform to Eqs. (6.1)-
(6.2), together with the conditions (6.3)-(6.4), gives.

d2 2 2 2 d2 dm
[- - (s +a )] TI + --2 [- - 2as dZ +
d/ I-a dz2

2 2 2 ch T = 2 sa3z
a s - (I-a) 2 - a

1
e G(s)

222
,ICa -~ )~ +

I-a dz
2 2

m a ] T2

22 aCm -l)s

l_a2
222

d CI-ma)s
dz + l_a2

2 2 sa3 z
+ a TI = a e G( )I s

(6.8)

+

(6.9)

Equation (6.8)-(6.9) from a coupled system of equation
for T 1 and T2 which may be combined into a signle fourth-
order differential equation with literal coefficients, cons-
tant with respect to z.

Although the general solution for this resultant equa-
tion can be given, the coefficients of the fourth-order alge-
braic equation, the roots of which yield the complementary
integral, depend on four parameters, vis, two numerical
constants measuring the shock strength and magnetic field
strength and the transform parameters. Since the algebraic
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representation of these roots is so complicated, one speci-
fic case has been examined in detail in Appendix A for the
choice of m = I, a 2 = 1/2. Further, while it should be noted
that the choice a = m would give a third-order equation,
this choice does not not seem to lead to any algebraic
simplications.

From Appendix A, the general solution is given by

The subsidiary conditions for these solutions are obtained
by applying the Hankel transform to Eqs. (6.6)-(6.7) with
the result that on the shock, z = 0

T2 = 0
and

1/2 d Tl 2 22 s -az- + (a + s + s2 M-2) T

(6. 12)

2 2 2s (LSS - LS6 a4 ) - LS6 a
[ 2 2 2 G(s)

a + a4 s

which may be written as

d Tl-az- + F6(a,s) Tl = F7 (a,s) G(s) (6.13)

with a new definition of coefficients. Eqs. (6.12)-(6.13)
serve to evaluate L6 1 and L62 with the result
F8L61 = [F3 (s a3 + F6) -F F (sA +

2 5 2

F6) - F7J G(s)

F8L62 = [F3(s a3 + F6) + F2F4(sA1+

F6) + F7J G(s)

(6.14)

(6.15)

where F8 = FS(SA2 + .F6) - F4(s>·I + F6).

Thus, the solution for the transforms is given by Eqs.
(6.10)-(6;11) and (6.14)-(6.l5). A formal inversion of
these tranforms gives the solution in terms of repeated
infinite intergrals. Solutions for the other flow parameters
may then be obtained from the governing differntial
equations and the subsidiary conditions.

Part II Plane Flow

The Basic Equations. With respect to an (x,y)-plane
coordinate system, the unsteady flow equations with
velocity vector (u ,v), subjected to an applied magnetic
field (B1, B2), may be written as

Pt + uPx + vPy
+ p(ux + v ) - 0 (7.1)Y

p(ut + uu + VU ) + Px -B2(B2x - Bly)/lJ (7.2)x Y

(l(v + uv + vv ) + P BI (B2x - Bly)/lJ (7.3)t x Y .y

BIt + v Bly + BlVy - B U - U B2y - 0 (7.4)2 Y
B2t + U Bzx + B2ux - Blvx - v Blx =- o (7.5)

Blx + B2y 0 (7.6)

St + U 5 + V 5 0 (7.7)x Y

No component of the magnetic field normal to the plane
of the flow is included, for an analysis similar to that car-
ried out in Part I shows that any perturbation of this com-
ponent will vanish identically, provided the component is
initially zero.

Aligned Fields. When Eqs. (7.1) - (7.7) are linearized
in the neighborhood of (u,v) = (0,0), Ii = (B 0) relativel' ,
toa coordinate system fixed in the undisturbed flow be-
hind the plane shock, the following system of linear
euqations is obtained
- p[ux v ] 0 (8. i )Pt + + y

OUt + Px = 0 (8.2)

Bl (B2x Bly) -1 (8.3)pVt
+ Py = - u

~ - BlV; = 0 (8.4)

B2t - Blvx = 0 (8.5)

~x + B2y = 0 (8.6)

0 2- 0 (8.7)5 = or Pt - c Pt =t

Using the same defmitions of symbols as in section 3
save for now letting B = ~ IBl' Q = vlc and carrying out ~
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similar reduction gives the following system of coupled
linear equations

2P + P + m (B + Bxx)
xx yy yy (8.8)

(8.9)

Since the flow is assumed always super-true-sonic,
the flow patterns on the two sides of a two-dimensional
airfoil will be independent of each other, so that it suffices
to consider the solution for v> o.

The initial and boundary conditions are that for

£: .:.. 0, P = Pc: =c 0, B = B;- = 0 (8.10)

and the shock conditions given by Eqs. (4.1) - (4.5)
hold _"?th r replaced by y and, Q now denotes vlc and
q* = v /Y. These give

o (8.11)

With the upper surface of the airfoil represented by the
function f, the boundary condition behind the shock may
be written as

(8.13)

on the surface of the airfoil.

From the second momentum equation, (8.3), it follows
that

(8.14)

on y = O. On the shock along the airfoil, Q = a 1 ( [a + a 1)1;:]
which, together with Eq. (8.12), gives

u* +y

(8.15)

At infinity, as

x -+ - 00, Y -+ 00, P, B and their derivatives vanish. Final-

ly, the distrubance field ahead of the shock may be expres-

sed as [3]

q* = v2/v=- B u* (H.16)

Introduction of the Lorentz transformation (5.1)
transforms the system of Eqs. (8.8) - (8.9) to

P
1111

2 ~
+ m B

yy
+P

zz
+ P

yy

(8.17)

2 2 ~
[~l B +

1_a2 zz

( 2 2) ~I-m a B
l_a2 l1n

2
2a(m -1)

l_a2

2 "
+ m B

yy
P
yy (8.18)

1\,. A A
The initial conditions are P = P1]= 0, B = B1]= °fo,.r1J..~0,
while the boundary contitions are y -+ 00, x -+ _00, B, P and
their derivatives vanish and at y = °
(lr _ a 2 £11 [a (n + a, z) jay - - 1. 2 .) (8.19)

A combination, entirely similar to that carried out in Part I,
gives the differential relation

(8.20)

valid on the shock. As before,

B = 0 (8.21)

on the shock. Finally, at z = 0 , y = 0

~~ = LS6 £11 [a2T11 (8.22)

The system of Eqs. (8.17)-(8.18) plus the subsidiary condi-
tions will be solved by applying the Laplace transform with
respect to n and the Fourier cosine tranform with respect
to y, i.e., with £ (p) = R\,
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(9.2) A = E3\j11; + E4M2u* + E6 B* + E7 p* (9.17)

(9.3) B E31ji1; + E4M2u* + (E
6

+1) B* + E p* (9.18)5

(9.4) P E 1Ji + E9~1)..* + E B* + Ell p* (9.19)8 I; ,. 10

(9.5)
0 E121ji1; + E13M2u* + E B* + E p* (9.20)14 15

Q = L41 q* + L42 ljiy (9.21)
(~.6)

T1(z,y,s) (8.23)

'"
Then, with £(B) = R2 ,1c (R2) = T2, the tramsforms of Eqs.
(8.17)-(8.18), together with the subsidiary conditions, give

d
2

2 2
[----=2 - (s + ex )J Tl
d z -

2
m

+ --
l_a2

d 2 2
2as dZ + a 5

2 2
- (1-a )ex )T 2 (8.24)

( 2 2),
[ a -rn2

I-a

2
2a(rn -1)5

2
I-a

222
d (I-rn a ) 5

dZ + l_a2

(8.25)

Structurally, this formulation is identical to that obtained
for axi-symmetric flow. Thus, the solution presented in
section 6 for the special choices of the numerical parame-
ters also is a solution of the system of Eqs. (8.24)-(8.25)
and the subsidiary conditions. The only difference is that a:
is now the parameter from the Fourier cosine transform. A
formal inversion gives the solution in terms of repeated
infinite integrals.

Transverse Magnetic Field. When Eqs. (7.1)-(7,7) are
linearized in the neighbourhood of (u,v) = (0,0), (0, B2),

the following system of linear equations is obtained

p+pCu+~=Ot x y
(9.1)

F.:'"" -B -
-- Px 2 2x b 2 ly
ut + 0 =-b2 ~ + 2 a;-

pv+p= 0t y

~ - B2 Uy = 0

- 2-P - c p = 0t t (9.7)

Using the same definition of symbols as in section 8, except

for letting B = B2/B2 , m2 = bV c2. the peturbation equa-
tions may be rewritten as

AE;, + 0 + Q = 0 (9.8)x y

2
-B-

0E;, + p = m
(....!r _

B ) (9.9)x B2 x

QI; + p 0 (9.10)Y

BIE;, _ D 0 (9.11)a;- y

B + D = 0 (9.12)I; x

PE;, - AI; = 0 (9.13)

B
BIx

(9.14 )+ - = 0
y B2

These equations "may be combined to give the following
system of coupled linear equations.

2P + P + m [B + B ]
xx yy xx yy

(9.15)

(9.16)

For this problem, it is necessary to utlize the perturbed
form of the transition relations across a normal magneto-
hydrodynamic shock. A derivation of these relations in a
form particularly well-suited for the present problem is
given in Appendix C. These relations may be written as

Where Eq. (9.21) is the same as Eq. (4.4) with r replaced by
y and p* = 1>2/'YP2; the other symbols are the same as
defined previously. These relations connect the quantities
in the region in front of the shock [subscrtpt 2) to those
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in the region behind the shock (subscript 1). In addition,
since the normal component of the magnetic field must be
continuous across the shock, there is the further condition
that the perturbed x-component of the induction is con-
tinous across the shock, i.e., (B~)l== (B~h. These condi-
tions will be applied at x == a~.

The initial conditions are that for

~ < 0 P = P = 0 B = B = 0s _' ~' ~ (9.22)

Elimination of l/I~ from Eqs. (9.19)-(9.20) and (9.18)-
(9.19) and l/I from (9.19) and (9.21) gives

E12 E13ES E14ES
B*D

=~ [P - (E9 --) u* - (ElO - --)
E 12 E12

(Ell -
ElsES

p*]--) -
E12

(9.23)

E3 - E4ES
B = r [P - (E9 - -E-) M2 u*

S 3
ES ES

E ) --) B* - (Ell - Es --E) p*]- (ElO - (1 + 6 E3 3

(9.24 )

Q~ = [Py - E9M2 u*y - EIOB*y -

E1IPy*]/E2S + L41 q*~ (9.25)

where EZ8 == E8/ L42.

The perturbed flow ahead of the shock (region 1) has
been determined previously{3] , and, as in the other cases,
it was shown that the magnetic field was not perturbed in
the insulator (airfoil, in the present context); thus, contin-
lity of the magnetic field across the interface shows that all
magnetic field components (and x-derivatives which are
formed by differentiating along the surface of the airfoil,
i.e., y=O in the linearized formulation) must vanish on the
surface of the airfoil in the fluid. Further, it is easy to see
that, within the limits of the linearized analysis, the magne-
tic field is not perturbed throughout the interior of the
airfoil.

As in the previous section, the boundary conditions on
the surface of the airfoil behind the shock are

(9.26)

2
P = - a1 f " (x + a1 ~)

y
(9.27)

and, since B = - 81/82,
Y

B = 0 on y = 0
y

(9.2S)

Also-along the shock on the surface of the airfoil

(9.29)

which, together withEq. (9.25), gives

P E (a) f " [(a + a.l) ~] +y = 2S a1 a + 1 s

(9.30)

At infinity, as x ..•.oe ,y ex], P, B and their derivatives are
to vanish. Finally, the disturbance field ahead of the shock
(region 2) may be expressed as[3]

{ 0 (y) f 1 (x + "i 0

- f ' (x + al ~ - y/w)} (9.31 )

q*

P2 2
p* =-.= n2 w f ' [x+ a1 ~- y/w]

YP2

where nz == uz/cz, Wz == (n~-mZ)/nZ(nZ_mZ_l).
Introduction of the Lorentz transformation Eq. (5.1),

trnasforms the system ofEqs. (9.15)-(9.16) into

P
1111

2 A

+ mB +yy
P zz + Pyy

2
2 Am [B - 2a B Bllll]--2 + a

I-a zz Zll

2 2 A 2a(m2_I) A(a -m ) B + B +
I-a 2 zz

I-a 2 zll

(9.32)
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2 A

a P 2 A

1111 + m B
+-Z yy

I-a
(9.33)

In the transformed variables, the initial conditions are

p = P = 0 B = B = 0 for 11 < 0
11' II '

while the boundary conditions are that as y -e-cc , X -+- =,
(B, P and their derivatives vanish; at y = 0

(9.34)

Two relations valid at the shock may be obtained quite

easily. From Eqs. (9.8), (9.12)-(9.13), p~ - B~ + Qy = 0, or

d a a A

all (all - a azHP - B) + ~ (1_a2) 1/2 0 (9.35)

and Eq. (9.24).
Substitution of the appropriate quantities into (9.35)

and (9.24) gives, entirely similar to the procedure of the
previous sections,

P
B) + ..rt.. =

E28
(P

2fll (a l1)n2 2
o/y) 2 2

\ n2 -m

E 2. f " [( )] E o(y) 2. f " [a211]30 all a2 11 - a5y + 31 an
(9.36)

where as = l/a2 w. Finally, on the shock at the airfoil,
y = 0,

P
Y

2 1/2
- E28E41 (l - a ) a2n2] f " [a211] - [34 fll [a2

11]

(9.38)

B = 0
Y

The system of Eqs. (9.32)-(9.33) and the associated
subsidiary conditions will be studied by the successive
application of Laplace and Fourier cosine transforms. Thus,
using essentially the same notation as in section 8, the
Lapalxce transforms of Eqs. (9.32)-(9.33), together with
the initial conditions, give

2
rn [ 2 2--2 R2zz - 2as R2z + a s R

2
]

I-a o (9.39)

2 2 2(a - rn ) R2zz + 2a(rn -1)s R2z +

222
(l-m a)s R2 ( 2) 2 RI-a rn 2yy

(9.40)

while the transforms of Eq. (9.34) give

R1y = -a12.t~" [a2(11 + a3Z)~=.

2 sa3z .
-a1 e G1ls), R2y = 0 (9.41 )

whereC, (S) = s: [F" (a21])]
Application of the Fourier cosine transform to Eqs. (9.39)-
(9.40), together with Eq.(9.41), gives

d2 2 2
[- - (5 + 0. )]Tl +

ctz2
rn2 d2 d

--2 [- - 2as - +
I-a dz2 dz

2 2 2 2 2 2 sa3 Z )
a s - In 0. (1 - a )]T2=- a1 e G1 (s (9.1\2)

2 2 d2 2 d 2 2 2[(a -m ") -+ Za s I m -1) -+ (l - rn a)sdz2 dz
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2 2 2 d2
+ m (1 - a ) ex]T = [__ 2 d 2 2

2 dz2 aScrz+as]T1(9.43)

A detailed analysis of this system will be made for the spe-
cial choices of m = 1, a2 = 1/2. From Appendix B, the
general solution for this special case may be written as

, sa, Z

.;. ((1 (a,s 1 e - (9.44 )

(9.45)

The coefficients L71 and L72 may be determined from the
transforms of Eqs. (9.36)-(9.38); application of the Laplace
transform gives

2
1 a Rl 2 ClR1 2

228 dy2 + S Rl - as az - s R2 +

ClR2 -aSsy
a S dZ" [E30 e + E31 <5(y) J S Gl (s ) (9.46)

-1 -aSsy
R2 - E24 R1 = [E32 e + E33 <5(y)J G2(s)

. (9.47)

where G2 (s) =.£ [f' (a271)].

(9.48)

Next, application of the Fourier cosine transform gives

2(s -

(9. SO)

Substitution of Eqs. (9.44)-(9.45) into (9.49)-(9.50) and
letting a2 = 1/2 gives

2 2 21/2[F9(s - sAS 21/2 _ ~)
+ SE28

As ] L71

2 SA 21/2
2

+ [FIO(s - ~) SA 21/2 2
6 + - s ] L72E28 6

2
Sl3 + a 2 2 21/2)(-E-- s + a3s Sl1 +

28

(9.51)

(9.52)

Solving this simple simultaneous system gives L7 1,L7 2,
which may be introduced into Eqs. (9.44)-(9.45) to give the
final solutiori for the transforms. A formal inversion of the
transforms gives the solution for arbitrary profiles in terms

of repeated infinite integrals. The other flow parameters and
the path of the diffracted shock may be determined quite
easily.
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(A.2) 2 23/2 2 2 2 sa3z
[s a3 - s a3 + 2s ] a1 e G(s )

Tl
(s 4 L (s a

3
) 2 23/2s 2a3) - 2s - a (s a3)

sa3z
4 + 3a 2 2 := F3(a,s) e G(s)+ s s

., 2 2 sa3z
s~(a3 - 1) a1

G(s) e(A.3) T2 4 2 (s 2 23/2 2 (s a3)(s a3) - 2s a3) - s a

APPENDIX A

Quartic Equation for Aligned Fields
In appendices A and B, only the final results are used

in the body of the paper; thus, symbols which may have
been used for other quantities in the paper are utilized.

The algebraic equation, whose roots yield the solution
for the homogenous system associated with Eqs. (6.8)-
(6.9)for the choice a2 = 1/2 is

(A. 1)

Letting A = sv, 2 28 = a /5 gives

which will be studied by Descartes' method[7]; thus,
writing (A·I) as

2 2(v + kv + h)(v - kv + m)

and equating coefficients gives

h + rn - k = -2, k(rn _ h)

m h = 1 + 38

which gives the following cubic for k2 :

k 6 _ 4k 4 _ 128k 2 _ 882 = 0

n3 _ 2n2 _ 38n _ 82 = 0
or with 2n = k2

(A.4)

The reduced cubic may be obtained by setting n = n 1 +
2/3 to give

3 2n1 - 3(8 + 4/9)n1 - (8 + 28 + 16/27)

the solution of which is given by

TI = {52 + 26 + 16/27 + 8(82
1 2

o IA.5)

_ 4/27) 1/2 1/3
} +

{82
+ 28 + 16/27 _ 8(82 _ 4/27)1/2}1/3

2
Thus k = 2(n

l
+ 2/3) = 2n

k'; - 2k + 23/2S
m = 2k

(A.6)

h

The roots v obtained from the first factor of (A.2) are un-
acceptable since they would lead to solutions which will
not vanish at negative infinity; consequently, only the two
roots obtained from the second factor need be considered.
Definins

2).1 = k + (k 2 _ 4m) 1/2,

2A2 " k - (k2 _ 4m)I/2

a consistent solution of the homogeneous system associat-
ed with EQs. (6.8H6.9) may be written as

sAl z SA2Z (A.7)
T2 L61 e + L62 e

T [22 2 2 2 ,1 s Al - (s + a )Ja- L61 eS~lz +

[s2A 2 (2 2) ] -2 eSA2z2 - s + a a L62

SAl z SA
2
z

:: F4(Ct,s) L61 e +,Fs(a,s) L62 e (A.S)

where L6 1, 1,62 are arbitrary. Finally, a particular solution
of Eqs. (6.8}(6.9) may be written as

4
+ 5

APPENDIXB

Quartic Equation for the Transverse Field Case
The algebraic equation for A, Whose roots give the solu-

tion for the homogeneous system associated with Eqs.
(9.42)-(9.43) with a2 == 1/2, may be Simplified by writing A
- sf 2'12 = 51', this gives -

o
(B. 1)

where (32 = «(X2/S2) + 1/2. The further substitution v = J1 +
21/IJ./6 gives an equation to which Descartes' method
may be applied, namely,
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~
IJ

2 2 23/2 1_\.1_ + ( )3 -36+18\.1 1 (~2 1 )"3 o - 36

') 2
(\.I~ + kW + h) (\.I - kW + m) = 0 (B.2)

where 0 = B2- 1/3. Equating.coefficients gives h+ m _k2 =
-2/~,k(m - h) = 23

.2 (8 + /8)/3, m h = _(82 - 1/36)/3
which leads to the following CUbicfor k2

6 4 4 4k 2 2 11 8 1 2
k -"3 k .•. -3-(0 + 36) - g( 0 + 18) = 0 (B. 3)

The reduced cubic is obtained by letting n + 4/9 = K2 to
give the solution

2 4{) 1 6 804 ~ 3~2
3n = {(4Q +"""3 - 2'7) .•. 2[160 - -3-'" 3 ~-

20 31 1/2 1/3 2 46 1 6
8T - 719] } + {(40 + T - 2'7) - 2 [168 -

864 86 2 3562 26 31 1/2 1/3
-3- + -3- + 27 - 8T - 719] }

Thus

k2 = n + 4/9

k3 _ 2k/3 + 23/2(6 + 1/18)/3m = .:.:....-...::..:.:.!..::..-...;:27"k-~-=.!....:::.::....c..'-'-

3 3/2
h = k - 2k/3 - 2 (6+ 1/18)/3

2k
As in Appendix A, only the roots obtained from the second
factor' in (B.2) are acceptable; defming

2A3 = k + (k2 _ 4m),1/2
2A4 = k - (k2 _ 4m),1/2

a consistent solution of the homogeneous system associated
with Eqs, (9.42)-(9.43) may be written as

T2 = L71 exp{[A3 + 23/2/3] 5Z} .•.

(B.4)

([A4 + 23/2/3) sz}

ASZ A6z
:: Fg(a,s) L71 e + FlO(a,s) L72 e (B.S)

where L71 and L72 are arbitrary. Finally a particular solu-
tion of (9 .42)-(9 .43) may be written as

L 2 2 2 2 5a3z
a1 (5 a3 - 5 - a ) e G(5)

T1 = 2n(a,5)

:: n; (c .s )

where
2 2 -1/2 2n(a,5) = a 5 (a

3
- 2 ) +

2 2 2 2 2
[5 a3 - 5 - a ] /2

APPENDIXC

Perturbed Form of the MHD Shock Relations
In[2] , a perturbed form of the normal magnetohydro-

dynamic shock conditions for flow perturbed in front of
and behind the initially uniform shock was given. For the
present paper, a somewhat different derivation is more
appropriate. Thus, let the flow in front of and behind the
shock be denoted by subscripts one and two, respectively.
Let t = P2/Pl,a = P2/Pl,m = b/c, n = u/c, M = (V -u)/
c, e = (y + 1)/( 'Y- 1) where V is the shock speed.

Then, from

M 2 = {_2_.+ ffi 2( Y + (2-r)a]}~,
1 y-l 1 Y-T y- 6-a

- - 2-y 2
Ml = ~ m1 + [(y:T)ffi1 a(6-a) + 6 E2 a
Ml E2 ffil 2(6-a)E2 ] a

here E = ffi 2[-1- + (2-y)a] E E + _2_
w 1 1 y-l y-:r' 2 1 v -I
Since
"i _ 'B1
ffi
1

- ~-

(C .1)

(C.2)

Ml V-~ c1
Ml = Y-u

1
- c

1
'

Eq. (C.1)may be rewritten as

2
(2-y) m1 a (6-a)/ (y-l) + 6El a V u1

[ 2(6-a)E2 Ci = Mici - MICI

(C.3)

(C.4)

with a new definition of coefficients; this gives

°2 v "i 81 PI
- E - + E - + E6 -B + E -P2 = 3 c1 4 c1 1 7 YPI (C.S)



360 R.M. Gundersen

where E7 = 1 + E, .

Since T
8 0~I-ymI2(1_0)3/2

8-0

.•..;..=
T

2+ yml 0 [38-1-680 +
2 36a-l-yml (1-0) /-2

3(6+1)02 - 203J/2 --------J~a
Ym12 (I-a) 3 m1

-[ 2 3]
60-I-yml (1-0) /2 m1

(C.6)

Substitution of (C.2) and (C.4) into (C.6) gives

2 2 2 3P2 PI 0(8 -1)+ ym1 0[38-1-680+3(8+1)0 -20 ]/2
- = -+ {-------,.-2 --...,3=--------}·
YP2 YP1 80-1-yml (1-0) /2

~ ~
E - + E -]
5 YPI 6 81

. v "i
[E3 - + E - +c1 4 c1

2 3yml (I-a) 81
[ 2 3] [- -
80-1-yml (I-a) /2 81

(C.7)

Since 82/B1 = a,
S; E .!.... +

u
1 PI (l+E6) ~

~=
E - + E -+ Bi" (C.8)3 c1 4 c1 5 YP1

U2 c1 M2
E3] v M2 ul

- = [- - - + M2 - + [- + M2 E4]c2 c2 Ml cl Ml cl

M2 ES
PI

M2
~

+ -+ E6 13::YPl 1

v ul ~ PIE12 - + E13 ~ + E14 13 + E -c1 1 IS YP1 (C.9)

with a new definition of constants and noting that M~ ==

Mila T and c~ = T cUa. Equations (C.S), (C.7) (C.8),. .
(C.9)give the required perturbations.

Finally, if the shock path is written as x« Vt + l/I(y,t),
where l/I is the small perturbation and y the direction
parallel to the shock, continuity of q, the velocity compo-
nent parallel to the shock, gives.

(C.lO)


