Pakistan J. Sci. Ind. Res., Vol. 24, No. 3, June 1981

CALCULATION ON MATERIAL BALANCE OF SSP MANUFACTURE

Muhammad Ishaque, Ishtiaq Ahmed and Nazir Ahmed Naseem

Fertilizer Technology Centre, P.O. Box 13, Faisalabad, Pakistan

(Received February 24, 1980; revised January 1981)

Material balance has been calculated for SSP manufacture from Jordan phosphate rock based on the mineralogical composition of Jordan rock specific sample. It has been found that by using acid rock ratio of 37.66 to 62.34 Kgs, 105.31 Kgs cured product (SSP) with 6% moisture is obtained.

INTRODUCTION

Single superphosphate (SSP) is being manufactured at NFC Lyallpur Chemicals & Fertilizers Limited, Faisalabad. Jaranwala by using Jordan phosphate rock. Theoretical calculations on The material balance of SSP were undertaken with a view to know the accurate quantities of the SSP being produced and also for a better understanding of the process by knowing the nature of all the chemical reactions occuring during the SSP manufacture.

Jordan phosphate rock of 90% -100 mesh finess is treated with 70% sulphuric acid in a U shaped trough provided with paddle type mixer. The slurry formed in the mixer is then fed to the Moritz Den revolving at the rate of one revolution in 2 hr. Preserving the heat of reaction helps complete the reaction and also helps collect and eliminate the gases evolved during the reaction. The slurry hardens during the slow rotation of Den and is discharged by the shaving action of the rotating cutter on the metallic conveyor. The ex-Den product becomes porous and semi-dry which can be cut, easily handled and stored in the shed for curing.

To start the theoretical material balance calculations it was essential to know the exact mineralogical composition of the Jordan rock i.e. the nature of various components which react with sulphuric acid.

Mineralogical composition of the Jordan rock sample MR-558 is known (taken from TVA un-published data). It is similar in composition to Jordan rock being used in the factory at present. This sample has therefore been selected for the material balance calculations.

Chemical Composition of Jordan Rock (Sample MR-558). CaO 49.20%; P_2O_5 31.50%; CO_2 5.00% F 3.80%; MgO 0.25%; Na₂O 0.70%; SiO₂ 6.00%; Al₂O3 0.35%; Fe₂O₃ 0.20%; K₂O 0.03%; Cl 0.16%; SO₃ 1.05%; Non-sulphate S 0.07%; N.D. matter 2.00%.

The phosphate rock (apatite) is always found substituted to various degrees and differ markedly in the manner in which chemical constitutents are combined. Keeping in view the mineralogical composition of Jordan rock and numerous unpredictable complications during process such as incomplete reaction etc., following assumptions have been made for material balance purposes:

- (a) All P₂O₅ is present as Ca₃(PO₄)₂. (b) All F is present as CaF₂. (c) All CO₂ is present as CaCO₃. (d) All SO₃ is present as CaSO₄ 2H₂O. (e) Any CaO not accounted for by the previous assumption is present as such, presumably in the apatite structure.
- 2. 25% of the CaF_2 present in the rock reacts with sulphuric acid and SiO_2 to form SiF_4 which is collected in the Scrubber as H_2SiF_2 and precipitates SiO_2 [1].
- 3. Under ordinary factory conditions where sulphuric acid (65 to 70%) and temperature of reaction is not dissipated by artificial cooling, anhydrite $(CaSO_4)$ is the normal form of calcium sulphate in the final product [2].

Average analysis of the product, SSP is as under: Total P_2O_5 20.20% (Equivalent to 64.12 grams of rock); Water soluble P_2O_5 18.10%; Citrate soluble P_2O_5 1.70%; Citrate insoluble P_2O_5 0.4%; Free phosphoric acid 4.0%.

After applying the simplifying assumptions the composition of the rockphosphate therefore becomes as under: $Ca_3(PO_4)_2$ 68.83%; CaF_2 7.80%; $CaCO_3$ 11.36%; $CaSO_42H_2O$ 2.26%; S 0.07%; NaCl 0.26%; Na₂O 0.60%; MgO 0.25%; Al_2O_3 0.35%; Fe_2O_3 0.20%; K_2O 0.03%; SiO_2 6.00&; N.D. matter. 2.00%, and their reactions taking place are:

1)
$$Ca_{3}(PO_{4})_{2} + 2H_{2}SO_{4} + H_{2}O \rightarrow CaH_{4}(PO_{4})_{2}O + 2CaSO_{4}$$

310 196 18 252 272

$$Ca_{3}(PO_{4})_{2}$$
 required for:
15.21%: W.S. P₂O₅ in the product. 33.21%

8)

	H_2SO_4 required for the formation	21 000
	of above $\operatorname{CaH}_4(\operatorname{PO}_4)_2\operatorname{H}_2O$.	21.00%
	H ₂ O added.	1.93
	$CaH_4(PO_4)_2 H_2O$ formed.	27.00
	CaSO ₄ formed.	29.14
2)	$2 \operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2} + 6\operatorname{PH}_{2}\operatorname{SO}_{4} + 3\operatorname{H}_{2}\operatorname{O} \rightarrow 4\operatorname{H}_{3}\operatorname{PO}_{4} + 6\operatorname{CaS}_{4}$	50 ₄ ½ H ₂ 0
	620 588 54 392	870
	C. (DO)) required for	
	$Ca_3(FO_4)_2$ required for.	6 220
	2.89% w.S. P_2O_5 in the product.	0.32%
	H_2SO_4 required for formation	
	of above H_3PO_4 .	6.00
	H_2O (added).	0.55
	H_3PO_4 produced.	4.00
	$CaSO_4 \frac{1}{2} H_2O$ formed.	8.87
3)	C_{a} (PO ₁) ₂ + H ₂ SO ₁ \rightarrow 2C _a HPO ₂ + C _a SO ₂	
5)	310 98 272 136	
	510 98 272 150	
	$C_{\rm e}$ (PO) + required for 1.7%	
	$Ca_3(rO_4)_2$ + required for 1.7%	7 71
	$C.S. P_2O_5$ in the product.	/./1
	H_2SO_4 required for the formation	
	' of above CaHPO ₄ .	1.17
	CaHPO ₄ produced.	3.26
	CaSO ₄ produced.	1.63
4)	Unreacted Tri-calcium phosphate	
	$(PO_{1})_{2}$ as such equivalent to 0.40%	
	$\mathbf{P}_{\mathbf{Q}}$ the product	0.87
		0.07
5)	$CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + CO_2 + H_2O_4$	
	100 98 136 44 18	
	$C_{a}CO_{a}$ present in 64.12 g of the phosphate	
	rock used for SSP manufacture	7.289
	H SO required for the decomposition	1.208
	n ₂ 50 ₄ required for the decomposition	7 12
	of above $CaCO_3$.	7.15
	CasO ₄ formed.	9.90
	CO_2 evolved (loss)	3.20
	H_2O produced.	1.31
6)	$Fe_2O_3 + 3H_2SO_4 \rightarrow Fe_2(SO_4)_3 + 3H_2O_4$	
	160 294 400 54	
	Fe_2O_3 present in 64.12 g of phosphate	
	rock used for SSP manufacture.	0.13g
	H ₂ SO ₄ required to convert above	
	Fe_2O_2 to $Fe_2(SO_2)_2$.	0.24
	$Fe_2(SQ_4)_2$ produced	0.33
	4/3	

H₂O produced.

7) $Al_2O_3 + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3H_2O_{102} 294 342 54$

Al_2O_3 present in 64.12 g of phosphate	
rock used for SSP manufacture.	0.22g
H_2SO_4 required to convert above	
Al_2O_3 to $Al_2(SO_4)_3$.	0.63
$Al_2(SO_4)_3$ produced.	0.74
H ₂ O produced.	0.12
$Na_2O + H_2SO_4 \rightarrow Na_2SO_4 + H_2O$	
62 98 142 18	

Na ₂ O present in 64.12g of phosphate	
rock used for SSP manufacture.	0.38g
H_2SO_4 required to convert above	
\tilde{Na}_2O to Na_2SO_4 .	0.60
Na_2SO_4 produced.	0.87
H ₂ O produced.	0.11

9) $K_2O + H_2SO_4 \rightarrow K_2SO_4 + N_2O_{94} 98 174 18$

K ₂ O present in 64.12g of phosphate	
rock used for SSP manufacture.	0.02g
H_2SO_4 required.	0.02
K_2SO_4 produced.	0.04
H ₂ O produced.	0.004

10) $MgO + H_2SO_4 \rightarrow MgSO_4 + H_2O$ 42.31 98 122.31 18

MgO present in 64.12g of phosphate	
rock used for SSP manufacture.	0.16
H_2SO_4 required for 0.16 grams MgO.	0.37
MgSO ₄ produced.	0.46
H ₂ O produced.	0.07

11) $CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$ 78 98 136 40

 $\begin{array}{c} \mathrm{SiO}_2 + 4\mathrm{HF} \rightarrow \mathrm{SiF}_4 + 2\mathrm{H}_2\mathrm{O} \\ 60 \quad 80 \quad 104 \quad 36 \end{array}$

CaF ₂ present in 64.12g of phosphate	
rock used for SSP manufacture.	5.0g
According to simplifying assumption	
No. 2, 25% fluoride takes part in reaction.	1.25
Acid consumption.	1.57

0.04

CaS	O ₄ produced.	2.18
HF	formed.	0.64
SiO	$_2$ going to stack in the form of SiF ₄	0.48
Constitu	ents going as such in the product are:	
1.	CaF ₂	3.75
2.	CaSO ₄ 2H ₂ O	1.45
3.	SiO ₂	3.37
4.	S	0.04
5.	NaCl	0.17
6.	N.D. Matter.	1.28

End product (SSP) obtained.

$CaH_{4} (PO_{4})_{2} H_{2}O.$		27.0
Free H ₂ PO ₄		4.00
CaH PO ₄		3.26
$Ca_3 (PO_4)_2$.		0.87
$\operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3}$		0.33
$Al_2 (SO_4)_3$		0.74
Na ₂ SO ₄		0.87
K ₂ SO ₄		0.04
MgSO		0.46
CaF ₂		3.75
SiO ₂		3.37
S		0.04
NaCl		0.17
N.D. Matter		1.28
		46.18
CaSO ₄		53.17
	Total	99.35
Total calculated CaSO ₄ formation.		

From $\operatorname{CaH}_4(\operatorname{PO}_4)_2\operatorname{H}_2O$	(R	eaction	No. 1)	29.14
From H ₃ PO ₄ (Free acid)	(,,	2)	8.87
			(He	emihydrate)
From CaHPO ₄	(,,	3)	1.63
From CaCO ₃	(>>	5)	9.9
From CaF ₂	(,,	11)	2.18
From phosphate rock, as suc	h			
$(CaSO_4 2H_2O)$				1.45
				53.17

Total calculated acid consumption.

For CaH ₄ (PO ₄) ₂ H ₂ O.	(Reaction No. 1)		21.0
For H ₃ PO ₄	(,	2)	6.0
For CaHPO ₄	("	3)	1.17
For CaCO ₃	("	5)	7.13
For Fe ₂ O ₃	("	6)	0.24

For Al_2O_3	(7)	0.63
For Na ₂ O	(,,	8)	0.60
For K ₂ O	("	9)	0.02
For MgO	("	10)	0.37
For CaF ₂	("	11)	1.57
			38.73

Loss calculated as volatile material.

CO,	(R	eaction	No. 4)	3.20
HF	("	11)	0.64
SiO ₂	(,,	11)	0.48
				4.32
H ₂ O Volatilized as steam.				9.82

Calculated water formed during reaction.

From Carbonate	(R	eaction	No. 5)	1.31
From Fe_2O_3	(,,	6)	0.12
From, Al_2O_3	(,,	7)	0.12
From Na ₂ O	(,,	8)	0.11
From K ₂ O	(.,	9)	0.004
From MgO	Ċ	,,	10)	0.07
•			_	
				1.654
			-	
Water added for dilution of		=		16.6 g
38.73 g of H_2SO_4				
Total input.				
Rockphosphate				64.12
Sulphuric acid 100%				38.73
Water for dilution of				
acid up to 70%				16.60
				119.45

Process losses.

Loss due to	
evolution of gasses	4.32
water loss	9.82
	14.14

Calculation on Material Balance of SSF Manufacture

		According to calculations sulphuric acid and phosphat rock ratio = Acid : 37.60					
End product.		Rock : 62.34					
Ex-den product		The rated capacity of NFC Lyallpur Chemicals &					
having 10% moisture	109.28	Fertilizers Limited, Faisalabad SSP Plant is 60 tons / 24 hr, i.e. 2500 kg/hr Material balance of the SSP produced has been					
Cured product		worked out on the basis of the above theoretical calculated					
having 6% moisture	105.31	ratios and one hour's production of SSP (2500 kg) as follows:					

Rockphosphate required per hour (for 2500 kgs SSP).1613.49 kgsSulpuric acid 100% required" " " " 974.58 kgs.Water required for dilution of acid to 70% " " " " 417.68 kgs

MATERIAL BALANCE

Components	Dilution tank	Mixer	Den	Gas washer and stack	Finished product kgs	
H ₂ SO ₄	974.58	974.58				
H ₂ O	417.68	417.68	250.00	247.40	150.00	
$Ca_2(PO_4)_2$		1110.56	21.89	(Loss during	21.89	
CaCo ₂		183.19		denning and		
CaF ₂		125.82	94.36	curing)	94.36	
CaSO ₄ 2H ₂ O		36.46	36.46		36.46	
S		1.01	1.01		1.01	
NaCl		4.28	4.28		4.28	
Na ₂ O		9.56				
MgŐ		4.03				
Al ₂ O ₃		5.53				
Fe ₂ O ₃		3.27				
K20		0.50				
SiO		96.81	84.80	12.08	84.80	
N.D. Matter		32.21	32.21		32.21	
$CaH_4(PO_4), H_2O$			679.42		100.65	
Free H ₃ PO ₄			100.65		82.03	
CaHPO			82.03		82.03	
$FO_2 (SO_4)_3$			8.30		8.30	
$Al_2 (SO_4)_3$			18.62		18.62	
Na ₂ SO ₄			21.89		21.89	
K ₂ SO ₄			1.00		1.00	
MgSO			11.57		11.57	
CaSO			1301.49		1301.49	
HF				16.10		
CO ₂				80.52		
Total:	Deserved and the second second	3005.56	2749.98	356.10	2649.98	
Working temp.	50 ^o C	120 ^o C	90°C			
Moisture.			10 %		6 %	

	Apatite	Calcite	Quartz & chert	e Halite	Gypsum	Amorphous Fe oxides	Amporphous Al and K sili- cates	Non sulfate S	Total
CaO	47.01	1.45			0.74				49.20
P205	31.50								31.50
cō,	3.86	1.14							5.00
F	3.80								3.80
MgO	0.25								0.25
Na ₂ O	0.43			0.27					0.70
SiO			5.60				0.40		6.00
Al ₂ Õ ₃							0.35		0.35
Fe ₂ O ₂						0.20			0.20
K20 3							0.03		0.03
Cĺ				0.16					0.16
SO2					1.05				1.05
Non-sulfate S								0.07	0.07
OH	0.20								0.20
H ₂ O					0.47				0.47
O ∼ F	-1.60								-1.60
$O \sim Cl$				-0.04					-0.04
Total	85.45	2.59	5.60	0.39	2.26	0.20	0.78	0.07	97.30

Appendix A. Model analysis sample No. MR - 558

With the courtesy of : Tenessee Valley Authority, U.S.A.

REFERENCES

1. Gilbeart H. Collings, Commercial Fertilizers their Sources and Use, (McGraw Hill Book Company Inc. New York.), fifth edition.

2. Wm.H. Waggaman, *Phosphoric Acid Phosphates and Phosphatic Fertilizers* (Reinhold Publishing Corporation, U.S.A.), second edition.