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Abstract. Governing equations for finite dynamic response of a special class of quasi-
equilibrated motion of soPdrubb~r circular cylinders are obtained.
An explicit relation between the radial time dependent displacement and the axial time
dependent stretch is obtained. It is shown that the distribution of radial and axial
stresses are parabolic with respect to the radial and axial material coordinates, respect-
ively. An analysis of the motion in the phase-plane is given to prove that the motion
is periodic. Exact solution for the period of oscillations is obtained in case the
oscillations are free, but initiated with a large initial information, and when the axial
loading is of the Heaviside step loading type. It is also shown that due to the Poynting
and Kelvin effects of finite shear additional surface tractions must be maintained on the
surfaces of the cylinder in order to provide the class of nonhomogeneous quasiequlibrated
large dynamic deformations under discussion.

Introduction

Considerable attention has been focused in the
last decade on problems associated with large
dynamic deformations oLbounded media." Classes
of materials for whiclisuch deformations are possible
in the elastic range are hyperelastic incompressible
materials and in particular rubbers and rubber-like
materials. The behaviour of such' materials are
fundamentally and inherently nonlinear in contrast
to classical hard solids.

The first dynamic problem in finite elasticity of
bounded media found its rather explicit but limited
solution in two remarkable papers of Knowlesb 2
analyzing large-amplitude radial oscillations of a
thick-walled circular cylinder. Upon the assumption
of incompressibility of the material, the governing
equations could be. integrated to . reduce to an
autonomous motion of a system with a single degree
of freedom. Subsequently Hengs and Solecki- and
independently Knowles and Jakub+, investigated
finite radial oscillations of spherical bodies.' C. C.
Wangs treated a similar problem for a thin-walled
spherical shell. Wesolowskis has analyzed the
problem of combined radial-axial motion of a
cylinder of infinitesimal length apparently neglecting
the secondary Poynting and Kelvin effects of finite
shear. Finite longitudinal shear (telescopic) oscilla-
tions of thick-walled tubes were first studied by
Nowinski and.Schultz.? and Nowinskit. A similar
problem was recently- reconsidesed by Wang'',
Some exact solutions to finite dynamic deformation
in bounded hyperelastic media have been given by
Shahinpoor and Nowlnskitv, (1971) and Shahin-
poor.l1,13 In a1l these works except? for l'ef.9 the
motions represent a special class of dynamically
possible.deformation called quasieq uilibrated motions

of perfectly elastic incompressible bodies. Generalized
universal solutions for quasiequilibrated, motions
were first given by Truesdellt+ and later revised in
1963 and 1968.

Truesdelland Nollls aiso give a brief review of
the above-mentioned theory. In short these motions
represent a special Class of dynamically possible
deformations for which the deformation field is
circulation preserving and at each instant of'.time,
the instantaneous configuration, of the body is also
a possible static configuration controllable by surface
tractions only. The usual procedure for approaching
these controllable deformations has been an inverse
procedure, viz, the dynamic deformations are specified
at the outset to be circulation preserving according
to some permissible functions and no constraints on
the boundaries may be assumed in advance .. Suitable
surface tractions must be maintained' on -the bound-
aries to provide such nonhomogeneous dynamic
deformations.-These boundary -cond'itions in a
sense compare with St. Venant's type boundary,
condititions in classical elasticity. Wangs mentions
that from a practical point of view, such surface
tractions are rather difficult to be realized mechani-
cally.

Guided by the foregoing remarks in the present
work we analyze the class of dynamically circulation
preserving finite deformations of a solid circular
cylinder made of an isotropic, incompressible, and
hyperelastic material. The deformations are such that
the a circular cylinder remains a circular cylinder at
all times but undergoes large dynamic' axial and
radial deformations. Governing equations of finite
dynamic response 'of the solid cylirider are obtained
in a fixed spatial coordinate system. The fixed spatial
coor?inate formalism of finite dynamic elasticity was
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wherechosen in order to avoid a possible confusion which
arose in Knowle's work-- 2 and rectified later by
Tadjbakhsh and Toupinw, as regards the noninertial
convicted coordinate formalism. For the corres-
ponding equilibrium problem the reader is referred
to refs. 17-19.

An explicit formula relating the radial time
dependent displacement and the axial time dependent
stretch is obtained. It is shown that the distribution
of radial and axial stresses are parabolic with respect
to the radial and axial material coordinates respect-
ively. Analysis of the motion in the phase-plane is
given to show that periodic motions of the above
nature are possible. Exact expressions for the period
of oscillations are obtained when the oscillations
are free, but initiated with a large initial deformation
and when the axial loading is of the Heaviside step
loading type. The desired boundary tractions to
provide such nonhomogeneous deformations are
found to have a degree of arbitrariness to the extent
of uncoupled portions of time and respective co-
ordinates.

General Formulae

Let x", xi denote the material and spatial co-
ordinates of a body, respectively such that the motion
of a body Bo at t =0 to B at time t > 0 is repre-
sented by three real valued functions

xi =xi (Xct, t), i, ex = 1, 2, 3 ... (1)
The equations of motion can be put into Cauchy's

form:

tij .. - .. i . .- 1 2 3,J-PX,I,J-, ,
or, alternatively

ij. k ij i jk [Cl2xi i' j . k]
t , J + r kj t + rjk t = P at2 + rjk x x ,

, .. (3)

where tij are the components of the Cauchy stress

tensor and rJk' s are Christoffel symbols of the

second kind, based on gij' that is, the metric tensor

of xi - system, and p is the density of the material.

Stress tensor tij is constructed from t! as
J

... (2)

tij - jk i ., k -1 2 3-g tk, 1, J, -, , ..• (4)

If the material is isotropic, homogenous and
elastic, it possesses a strain energy function

~ =~ (L1, ILl' IlL})
c c c' ... (5)

so that by Green's energy method.rt

k lk k k
t, = ~, c1 +b0 & I + bl c1 ... (6)

b _ 2
-1- VIlLI

c

()~
aI'-1c

... (7)

... (8)

..• (9)

h . -Ii hIn t e equations above c. , s are t e components
J

of Couchy's strain tensor given by

-u -clij=g. GOt~ axi oxj
ck =gjk [k oXot ()X~ ... (10)

-Ii .and 1_1' TT_l' ITJ_1 are the invariants of c
J
' ,gIven

c c c
by

-u 2 -Lk e l mI_I EO! c. ; reI =! (r-l-Cm ck ] ... (11)
c 1 c C

-u -IkIII -1 = det. cj = I cj I·
c

Clearly

Cl.· -:Ii ·-1 i -u -u -lk
J =[cJ J =II~1 6j - \1 cj +ck cj

..• (12)

... (13)
or alternatively

c! = !E i E pq c Ire 1s
J rs J p s : ... (14)

where Ei and E~q are permutation symbols. Inrs J
the case of incompressibility of the material

-Ii . i
ITT_I = j cj I = I Cj 1=1

c
and equation (6) reduces to

i i cl;-lit: =-p8· +2- c. -2
J J 0 I_I J

c

... (15)

a~
a II_I

c
c~

J

... (16)
where p is of the nature of hydrostatic pressure and

since it involves the term () ~l; IlLI = 1, itc1 c
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should be determined later from equations of motion
and boundary conditions.

Formulation of the Problem

Let us consider a solid circulur cylinder made of
homogeneous, isotropic, ideally elastic and incom-
pressible material. Let the cylinder points have

material coordinates XIX=R, H, Z, and the cylinder
and outer radius Ro and height H in its undeformed
state.

It is assumed that after the deformation the
cylinder retains the shape of a circular cylinder and
a point of t4.e cylinder at time t > 0 has spatial
coordinates Xl = r, 6, Z, such that the dynamic
motion is axisymmetric and described by the func-
tions

r=7] CR, t), 6 =6, z=~ (Z, t). ..(17)
From equations (10), (11) and (12) we arrive at

r ~ I r 7]2 ? I
7]R 0 0 -zEZ 0 0

R
R2o 07

2 2
07]'1R

7l
. . (18)

.. (19)

-lic. =
J

L

o o 1c. =
J

2
~Z

J
oo o

2
7] 2 2 2 2

ILl = -2- [rJR + ~Z] +7]R ~Z
c R

2 2 2
rJR ~Z 7]

111_1 2 = 1, (incompressiblity).
c R

The incompressibility equation (15) in the present
case reduces to

~ (Z, t) =>. (t) Z,

2 R2
'I =-. ...(20)>.

In view of equation (20) equation (19) takes the
form

2 2
leI =T+ A ,

. 1
ILl =2>. +-2 ' ...(21)c )-..

and consequently from (16), and (17-21),

t11= -p (R Z t)+2'E :!- 2~ x,
. " 0 LI).. 0 ILl

c C

25

... (22)
o ~ 0 ~ 1t33=-p(R Z t) +2 --,\2-2- __ '" a LI a ILl >.2

c c

t12 = t21 =t23 = t32 = t13 =t31 = O. . .. (23)
With the above stresses and remembering that the

only nonvanishing Christoffel's symbols are rh
= -7], rr2 = r~l =1(7]', the equation of motion (3)

simply reduce to
113t ..a R =p'YJR7],

33o t ..IT =p ~Z ~ ••• (24)

Employing (20) we obtain the equations of
motion (24) in the form

11 . 2 ~.

~ ~~ .1~.a R = p R [ 4 3 - 2 2 J, ... (25)
).. )-..

33at ..
-=pZ'\)-"az

The above equations can be integrated to give
. 2 ..

11 2 3>. x
t =! p R [-3 - t2] +El (Z, t), ... (26)4>. )-..
33 2 ..

t =t p Z >. >. +Ez (R, t), ... (27)
where El (Z, t) and E2 CR, t) arise as a result of
integration.

Employing equation (16) and with the aid of (20)
one arrives at

11 33 1 0 ~ 0 s
t = t -[>'-2] [2).. ~ + 2~].

>. 0 c 0 c
... (28)

Note that since L1 and ILl are only time dependent
c c

. ol: ol: .
(see equation 21), then a Land a IL are functions

c c

of>. (t) or, generally, in this particular problem time
dependent only.

A close inspection of equations (26), (47) and (28)
shows that

.. 2
El (Z, t) = t p ).. >. Z + gl (t), ... (29)
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• 2 ••
2 3;\ ;\ .

E2(R,t)=~pR [-""2-2"]+gz(t) .•.(30)
4;\ 2A

where gl(t) and gz(t) are arbitrary functions of time
depending on the prescribed surface tractions at th~
ends and on the curved surface of the cylinder.
Moreover,

g2(t) - gl(t) = [X -~] [2E + 2 ~].
X 0 1-1 0 JL Ic c

... (31)

Upon employing El (z, t), and E2 (R, t) in (26)
and (27) respectively, it is found that

. 2 ..
11 2 3;\ A .. 2

t =!pR [3---2]+!pXAZ +gl(t),
4X 2X

·2 ..
33 2 J,. A •. 2

t =! p R [-3 --2 ]+! p A).. Z gz (t),
4X 211.

..• (32)
The presence of the parabolic terms in Z and R in
the above expressions is due to the Poynting and
Kelvin effects. They clearly indicate that additional
surface tractions must be applied on the surface of
the cylinder in order to produce the desired large
nonhornogenous dynamic deformations.

At this stage let us take
'2 ..

33 H 2 31. ,\
t (R, ±"2 ' t)=A(t)+~, P R [-3 --2 ],

41. 2,\
... (33)

where A(t) is a given end pressure and the second
term on the right hand side of (33) will be known
upon the determination of A (t).

Now from (32) and (33) is found that
)

] 2 ••
g2(t =A(t)-T p H ,\ X, ... (34)

and consequently by employing (34) in (30)

gt(t)=A(t)-i p H2 ,\~·[,\-·.I2] [2 ~,\ + 2~,\ a Ll 0 ILlc c
... (35)

. Suppose that. outer curved surface of the cylinder
IS basically traction free but additional time depend-
ent. tr~ctions parabolic i~. Z. should be supplied to
maintain the dynamic equilibrium. We thus take

11 .. 2
t (Ro' Z, t)=~ P X A Z . ...(36)

From equations (31), (35) and (36) we arrive at
the nonlinear-differential equation of motion in the
form

'2 ..
1 R2 [ 31. A. . 2 .. I
2 P 0 -3 - -2 J + A(t) - i p H ,\,\ - [,\ - --].

411. 211. 11.2

o}; a};
[ 2a-r- x + 2011]=0,

c1 '(;1

Sol~ltion of the above equation for ,\ would
determl~e the stresses and the radial displacements.
For clarity let us take the material of the cylinder to
be of the Moony-Rivlin type whose strain energy
function is in the form

. .. (37)

};=i IX(J_ -3)+t ~(ILl-3). ...(38)
c c

Then equation (37) is rewritten in the form
. 2 ••

;.. R2 [ 3,\ ,\ A(t) 2 ••
~ P 0 -4 - -3 ] + - -l p H, ,\

4X 2,\ ,\

1 1
-IX(A - '2") - ~(l- -3 )=0. ...(39)

x ,\
This nonlinear second order ordinary differential

equation can be integrated to give:
• 2 t .

-i p R; ;-+ f A(2X dt-!p H2 ~2

'" 0
2 I 1

- (1(2'\ + >: )- ~[,\+ -2 ]=const. ... (40)
n
take ACt) in the formTo be more specific let us

of the Heaviside step as

A(t) ={ Ao t> 0 1 ...(41)
o t < 0 J

~o that ~he tube is initi.ally at rest but suddenly
at time t = IS confronted with a step of magnitude
Ao which is subsequently maintained (Fig. 1).

The initial conditions take the form

X(o) = 1, X(o) =0, ... (42)
This simplifies the equation (40) to

'/ = l3/2~1X+ ~\X3-I-A oX3J 11,\ -1X[1"- s +1. 2] - M,\ 4 +!X]]
2 1 2 3

t p Ro + 16 p H "-
... (43)

which is the governing equation of motion of the
cYIJl1~er subjected to an impulse load Ao at time
t=O .

Analysis of the Problem in the Phase Plane for
Forced Oscillations

Equation (40) describes a trajectory C, Fig. 2, in

~he ,\ -,\ phase plane associated with the motion. C
IS symmetric about the "- axis. According to the
known theorems of oscillations (T = fd,\/~) is finite.
The curve C starts at the initial point '\1 = 1, ~ =0,

--- ---------
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.4.•

0,0

-z

Fig. 1. Quasi-equilibrated configuration of the cylinder or
a corresponding static equilibrium of the cylinder at a

certain time t.

Fig. 2. Variation). versus). for ~=O, (H/R)=l

at time t = o. If there exists another real positive

root A2#Al such that ~ =0, then the integral curve
becomes closed provided it is continuous and bounded
in the interval [>"1' A2]. Clearly, the curve C in
equation (40) is continuous and bounded for all

'2o < >.< 00. It may be shown that>. is monotoni-
cally increasing up to a finite maximum value and
then monotonically increasing up to a finite maximum
value and then monotonically decreasing to zero for
which A= AH6 Ai' Therefore in the present case the
existence of another positive root A2*A1 is a neces-

27

sary condition while boundedness of equation (40)
is a sufficient condition for periodicity of motion.

Putting A =0 in equation (40), yields

2 1 1
3/2(1X+~)-IX[!A +-]-~[A+-2 ]+A In>.=O.A 2A 0

.. (44)

A closed form solution of the above equation for
a positive root >"2*Ai = 1 cannot be obtained expli-
citly, but numerical solutions can easily be applied to
find >"2' In this regard let us rewrite equation (44)
for a Neo-Hookean material (~=O) in the following
form:

3/2+Ao 1

[
p R~ ~~J= { IX 3 tnA-

2
t A

2
->:~ ..(45)

4a L ill x +i H IRo J
Let us denote the r. h. s. of (45) by f(A, Ao/IX,

H/Ro' where

f(l, Ao/a, H/Ro)=0 .. (46)

It may be shown that for a fixed HIRo and Ao/a. the
function f is monotonically increasing up to a
maximum value and then monotonically decreasing
to zero for which A = A2# 1. This is also shown sche-
matically in Fig. 2, for a H/R = 1 and four different
values of Ao/IX for which the associated values of A2
are found. For small values of (A-I) one may
write, upon the expansion of equation (44), the
following characteristic equation:

2 / -1A +A-2 (I-Ao IX) =0, .. (46)

The only positive root A2* 1 is found as

A2 = -t+t VI +8 (l-AO/IX-1

It is clear that for A2 to be real .

Ao/IX < t,

.. (47)

.. (48)

which is a rather natural restriction on the amplitude
and the sign of the applied loading for the prescribed
oscillations to exist.

In fact if the value of Ao is negative (compressive

impact) then equation (48) is automatically satisfied
and there are no restrictions on the magnitude of
this compressive impact. However if Ao > 0

(tensile impact), then the condition in equation (48)
has to be satisfied ; otherwise the prescribed dynamic
deformations cease to exist.

So far it was shown that the cylinder under a
Heaviside step axial loading executes periodic oscilla-
tions in the form of combined axial-radial oscillations
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of the quasiequilibrated type, provided suitable
surface tractions are maintained on the surfaces of
the cylinder; moreover the axial oscillations consist
of a uniform dynamic stretch.

Having found A2 we can now express the period

of oscillations simply in the form

dA. f A.2 dA.
T=f-.-=2 sgn (A2 -AI) -.-, •.• (49)

A Al A
and substituting for A in equation (44) from equation
(43) (simplified for the Neo-Hookean material) we
get

2 -3 ! ~
. Af2[ .125pR A +(1/1(;) pH ]2

T=2sgn(,\,z-1) 0 f -1 :lA
1 1.5o:+Aoln,\-cx(.5A +,\ )

... (50)

The convergence of this inproper integral of the
second kind can be proved by the following p-tests
for both limits:

for the limit ,\ = I, P = t. A > 0o
2 . 2 A

. _ t· -l_[P Ro +tPH]~
Lim l,\ 1) A - 8A .•.. (51)
A-+l 0

for the limit A.=>'2' p=t. Ao > 0

A ~ A.2
for the limit A= I, p = t. Ao < 0

2 2 *
A' [-PR -tPH]~

Lim (1 - A)2 A-I = 80A I

A-71- 0

for the limit A= A2' P = -}. Ao < 0

•.. (53)

Lim (A->'2)i,\ -1 =[
+J.. -7 >'2 ... (54)

Since all these limits are finite and p < I therefore
the integral (50) converges in [AI' '\2].

Analysis of the Problem in the Phase Plane for
Free Oscillations Subjected to Large Initial

Deformations

From equation (40) putting Ao =0 (free oscilla-

2 ~2 I 2'2 2 I
tions) one gets -tpRo >!-f6P H A -o:C!A. -1--:.\)

1
- ~ (,\ -I- 2A2) = const. . .. (55)

Let the cylinder be subjected to a large initial
deformations such that

ACO)=AO' A(O)=O,

x(o)=xo' x(o) =0. ...(56)

Upon employing equation (56) in (55) one obtains

'2
2 A 9 2'2 2 1 1

-!pR ---·R A -cx(i,\ +-)-~(>.+-)o >.3 16 'A 2).,2

2 1 1
-I-a(}. A -I- -) +~fA. -I- -) =0

J 0 ,\ 1", 0 2 .
o 2,\

o
... (57)

Again the integral curve A, ~ (Fig. 3- 4) repre-
sents a curve, symmetric with respect to the )"·axis
and intersecting the latter at the point Al = Ao' as

.- ---/~ <, -.
( \
\ J

~~ ",/"
/

- -
r., 0·1) 08 ·0 .1) . I,

·2
·0
-2

-6

Fig. 3. Variation er x versus X for >-1=0.5, (HJ~)=1.

e;xpected. Following the argument leading to equa-
tion (44) we find that the motion under discussion is
periodic if and only if there exists another real
positive root A2 "" AO of the equation

1 2 1 1 2
-a(, +i'\ )-~(A+-2-)+(cx- +i A )

f\ • n AO 0

+ ~(Ao + ~) =0, ... (58)
2,\0
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/v--I-- t--I--
V \/

If
1\ -,

<, /+-. »> ~-----
·4 /-US Utl U· .~ 0 8 4'

·6

·2
·0
-2

-6

Fig. 4. Variation 0>'versus A.for >'1=2., (H/R)=1.

obtained from equation (57) by putting ~ =0. For a
Neo-Hookean material the above equation simplifies
to

2 2
«(.\ - >"0) [1 - i .\0 .\ - i .\0>" ] =0,

and the desired root >"2 becomes

A2 •• A; [ V 1~ 83 -1 ]
>"0

Consequently the period of oscillations is found
in the form

... (59)

... (60)

,( dJ,. fA2 d,\,
T= ~-.- -2Sgn (,\2 -AI) -.-

J,. A1 ,\,

Substi~utin~ for ~ in equation ~ (61) from equation
(57) (simplified to the Neo-Hookean material) we get

... (61)

A 2 _3 2
2[.125 P J,. + 0.063 pH 1

T=2 sgn (X2-1f ) f 0 .1dxo 2 _1 2 _1 2
>'. cx[':;'\'O+AO -.5>. -A

... (62)

as the period of oscillation of a cylinder subjected to
large initial deformations. Again the convergence of
this inproper integral of the second kind can be
easily proved by the p-tests for integrals as follows:

for the limit A.o< 1, p =i,
2 3 2

. '-1 [PRo+m.\oPH]!
trm (>' -'\'oH,\, = 4' •••(63)

8a (I-A )o
,\,.• .\+

o
for the limit '\2 > 1, p =!,

29

,\ .• >.;
for the limit X > I, p=i,o

2 3 2

. .1 '-1 [P Ro +(i) >'0 pH ]i
Lirn (>'0 - >,.)2 A. = 4 ' ••• (65)

8(X(,\0 -1)

and for the limit'\2 < 1, p=i,

o 2 3 2. * '-1 [P Ro +(-~) A2P H ]t
Lim (,\ - A2)w A = -4-- .... (66)

8(X (1- A.
2

)

since all these limits are finite and p < 1 therefore
the integral of equation (62) is convergent i; ['\0' >'2]'
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