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Abstract. Two methods for the computer based enumerations of self-avoiding random walks
according to their order are described. One is an exact enumeration method and the other is a Monte
Carlo method based on the 'slithering snake' technique of Wall and Mandel. It is suggested that 'such a
classification of random walks according to their order helps in the study of polymers in different
solvents.

INTRODUCTION

A self-avoiding random walk (SARW) is a random
walk With the restriction that no point in space may be
visited more than once [1]. This means that in a SARW
neither step reversal nor the formation of any closed loops
is allowed. Such a restriction makes a SARW non-Marko-
vian in the sense that the probability at nth step (for any n,
no matter how largejdepends on the probabilities for all the
previous n-l steps, because while taking the nth step all
of the previous n-l steps must be remembered in order
not to intersect them. It is due to this non-Markovian
nature that SARW has so far defied exact mathematical
analysis. In the absence of such an analysis exact and
numerical techniques have been used for studying SARW.
An example of the approximate method is the transition
matrix approach in which a SARW is approximated by a
restricted walk with limited number of restrictions [2].
Such a walk is Markovian and can be described by 'a
transition matrix which relates the n-step walks to the
(n-l)-step walks. For a small number of restrictions the
transition matrix can be diagonalized and its eigen values
calculated. The order of the transition matrix, however,
increases very rapidly as the number of restrictions are
increased which makes ~t very difficult to study random
walks with more than a very small number of restrictions
with this method. The numerical techniques for studying
random walks fall into two categories: One is the exact
enumeration method in which all of the walks of a rela-
tively small number of steps ( about 16-20) are enum-
erated and the results so obtained are extrapolated to walks
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corresponding to larger number of steps [3]. The other
method wakes use of Monte Carlo sampling technique
which can be used to study walks of much larger number
of steps [4] .

In the present work the concept of order of a walk is
introduced. It is defined to be the number of steps with
at least one identical nearest neighbour. According to this
definition n-step walk with maximum number of kinks is'
of order zero and the one without any kinks - the straight
chain - is assigned the order n-l. Exact and Monte Carlo
enumeration methods of self-avoiding random walks classi-
fied according to their order are described and some results
obtained with these methods are presented in the last
section. It is also shown that such a classification of
random walks enables one to get results for SARW with
biased probability in the forward direction from the results
for walks with equally likely probability of step in all
directions.

II. PROCEDURE

A. Exact Enumeration. In the enumeration of random
walks on the computer there are two hurdles: one related
to the computer storage and the other related to the
computer time, both of which are necessarily finite. The
number of n-step self-avoiding walks on a lattice of co-
ordination number z, for example, is of the order of
(a-T)". Also an n-step walk may wander around any-
where in a region of size (2n)d, d being the dimensionabi-
lity of the lattice. Thus the total space requirement for
storing all of these walks comes out to be of the order of

(
d n2n) (z-l)
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For a lO-step walk on a square lattice this number is about
ten million and for a lO-step walk on a simple cubic lattic
this number is about twice as big. One must, therefore,
devise means to reduce these numbers to managable size.

The first obvious step is to make use of the
symmetry of the lattice. For example only one direction,
say the +x-direction, may be chosen for the first step
out of the z equally likely possible directions. Similarly,
out of (z-2) possible directions for the 2nd step which are
at an angle to the first step one needs only choose those
in the first quadrant. This reduces the storage ( and time)
requirements by a factor of about l/z ( z - 2) ; i.e. by

a factor of 8 for a square lattice and a factor of 12 for a
simple cubic lattice. Another major reduction in the
storage requirement can be achieved by representing a
step along a given bond by an integer associated with
that bond. If the bonds meeting at a point are numbered
(b
I
, b2, ... bz). then a given n-step walk may be written

as a string of numbers:

which are chosen from amongst the set of numbers
(bI,b2 ... b) subject to the restriction that the walk be a
self-avoiding walk. For a square lattice one may use the set
of numbers (1, 2, - I, - 2) to represent the walks along

the four possible directions and for a simple cubic lattice a
possible set of integers is (1, 2, 3, -I, -2, -3). Some
examples of such strings along with their corresponding
graphical presentation are given in Table I.

Further reduction in the computer storage require-
ments can be achieved by packing several steps into a
single computer word. For the square and simple cubic
lattices, for which the integers representing the steps are

between -2 and +2 and between -3 and +3 respectively,
one needs only three bits to write these numbers. Conse-
quently, one may pack upto 20 steps into a single CDC
word which is made up of 60 bits. This means that each
walk of upto 20 steps may be represented by single word in
a CDC machine. After implementing all these measures the
storage requirements are reduced from about (2n)d (z _1)n

words to about [1/z(z-2)] (z=l )" words.
In view of the symmetry considerations mentioned

above, for enumerating random walks on a square lattice
the first step is always ~aken in the + x- direction and the
2nd step is taken either in the + x-direction or the + y-

direction. These initial constraints and the classification
of walks according to their order leads to the following

-~---. -----

Table 1. Some examples of a 10-step self-avoiding random
walks corresponding to different orders.

Order Numerical Representation Graphical Representation

o 12-12-1212-12

1 12-121121-21

2 12111212-12

3 1121-211221

4 12122-1-1-] - 2- 2

122211-2-2-2-1

6 111222-1-1-2- 2

7 1222211111
~ I I I I

J~8 1111112222

9 1111111111 I I I I I I I I I

systematics;

i) All walks having odd order end with tx-step as the
last step.

ii) All walks having even order end with ty-step as the
last step.

Therefore adding a step to an n-step walk identical to
its last step we get an ( n+1)-step walk of the same order as
the one before adding the step, and adding a step to an
n-step walk different from the last step we get an (n+1)-
step walk with its order reduced by unity.



Exact Enumerations of Self-avoiding Random Walks 93

The self-avoiding nature of the walk is realized in the
following way: Firstly reversals are not permitted; i.e.
+1(+2) and -1 (-2) do not follow one another. Secondly
the formation of closed loops is not permitted: Now on J

square lattice a closed loop may be rOlf/led in an even
number of steps greater than or equal to 4. Moreover
the components of the cumulative distance covered during
these steps along the: x- and the y-directions must both
vanish for a closed loop. Thus all walks for which these
components both vanish for the last even number (;;;. 4)
of steps of the walk are discarded as unsuccessful walks.
B. Monte Carlo Method. For the Monte Carlo samp-
ling of self-avoiding random walks classified according
to order we have adopted theslithering snake. technique' of
Wall and Mandel [4]. It may be recalled that in this
method the head of a chain of fixed contour length is
moved one space in a lattice with all the other elements of
the chain moving forward along the old contour. Possible
moves of the head are selected at random and for moves
precluded by double occupancy the old configuration is
retained, with heads and tails interchanged, and then
counted as if a move were made,

Since the procedure outlined above involves adding a
step at the head of the walk and chopping off the step at
its tail-end, the following four possibilities are of interest
for dcterming the order of the new configuration.

i) The step added at the head of the walk is identi-
cal to the step preceding it.

ii) The step added at the head of the walk is different
from the step preceding it.

iii) The step chopped off at the tail-end of the walk is
identical to the step succeeding it.

iv) The step chopped off at the tail-end of the walk is
different from the step succeeding it.

The order of the walk remains unchanged in situations
where either (i) and {iii), or (ii) and (iv) are true, it is en-
hanced by unity in cases when (i) and (iv) are true and it is
reduced by unity when (ii) and (iii) are true.

III. RESULTS AND DISCUSSION

In this section we present some of the results obtained
with the above methods for an 'unbiased' self-avoiding
random walk, i.e. a random walk in which steps in all
allowed directions are equally likely. A detailed discussion
of these results is deffered to a subsequent paper. In this
section we also briefly describe a method for using these
results for extending SARW as a model for the study of

polymers in different solvents.
In Fig. 1 we present the quantities Cir) and

.l <: R~ (r) > as functions of the walk order r for a
n
lO-step walk on a square lattice. One set of curves corres-
ponds to the exact results and the other to the Monte
Carlo results. Following the standard notation in the litera-
ture we have defined C (r) to denote the number of

n 2 h'successful' walks of order rand <..Rir) > denotes t e
mean square end-to-end distance for n-step walks of
order r. It may be noted that our results for (R~),defined

as the mean square end-to-end distance for an n-step
walk averaged over all orders,

n-J
~~
C

n r=O
n-J

C (r) < R2(r) >n n

r=O
for both the e-xact and the Monte Carlo enumerations
are the same as the corresponding earlier results [5] (see
also Table 2). Our results for Cn, defined above, also agree
with those of Fisher and Sykes [3] after we carry out the
following simple transformation which is necessitated by

'"l-
ii
::J
>
II:•II:
-ן

m
a:

"

4 •
ORDER r

Fig.1. Exact and. Monte Carlo results for a 10-step self-avoiding
walk on square lattice corresponding to ex = 1

n - 1

Cn = L Cn (r) = 5513

r=o
112

_<:.R2> = -. -~C (r) <'R (r» = 2.625
n n nC n n

n
Total attempted walks for the Monte Carlo results = 180000.
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Table 2. Mean square end-to-end distance for self-
avoiding random walks on a square lattice: exact and
Monte Carlo results.

n

8 19.0446
9 22.3769

10 26.2492*
11 30.02068
12 34.1908
20 71.9±O.lt
40 201.2 ± 1.0tw • _

740
2034
5534

15037
40617

*Exact as well as Monte Carlo results.
+Monte Carlo results.

the symmetry considerations mentioned earlier;
1 1 F

C = - (- C + 1),
n 2 4 n

where ~ refers to the corresponding quantity used by
Fisher and Sykes. Table 2 also gives some of our exact
results for CII for the walks we have so far enumerated.

We now briefly discuss the extension of the above
results to a self-avoiding random walk with a bias in the
forward direction. Let a P be the probability of taking a
step in any of the other allowed Z-2 directions. From the
conservation of probability we have,

exP+(Z-2)P=1

or
P

Z-2+ ex

The unbiased random walks mentioned earlier correspond
to a = 1, a straight walk corresponds to a = 00 and a = 0

Table 3. Exact results for mean square end-to-end dis-
tances of self-avoiding random walks on a square
lattice.

r

o
1

2
3

2.407
2.361
2.427

2.539

2.072
2.037
2.156
2.40

2.178

2.164
2.257
2.414

2.27
2.25
2.33
2.37
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gives random walks with bond angles 900. Physically
speaking small values of ex would correspond to polymers
in 'poor' solvents where they would tend to contract and
large values of ex correspond to polymers in 'good' solvents
where they would tend to elongate. It may, however, be
noted that ex does not necessarily vanish for extremely
poor solvents as, for ex = 1, .( R2n tr) has a minimum
value for values of r greater than zero ( see table 3 and the
following discussion).

According to the above definition of a biased random
walk the probability is ex P for eaeh pair of identical conse-
cutive steps and it is P otherwise. Thus the total probabi-
lity to get an n-step random walk with r identical con-
secutive steps is «r" pn . As it is obvious r is nothing but

the order of the walk. The ex -dependance of the mean
square end-to-end distance of a 'biased' self-avoiding
random walk may, therefore, be calculated from order-
dependent mean square end-to-end distance of the corres-
ponding 'unbiased' walk as follows,

n-J

4.R2(a»=
1 'L, ..::::R~ (r)n Cn( ex) exr

r=o
where n - 1

Cn( ex ) =~ exr Cn(r).

r=o

taJ

Jig. 2. Exact results for l Oetep self-avoiding random walk.

C2(r) vs walk order 'r' for different values of ex andn .'
1

<-R~ (ex» = ::s Ii r Cn (r) <: R~(r» vs a«. (ex )
r



Exact Enumerations of Self-avoiding Random Walks

In so far as a is related to the polymer-solvent inter-
action, the above-described procedure, therefore, enables
one to study single polymers in solutions with the help of
'unbiased self-avoiding random walks. In Fig.2, we present
some exact results for aID-step self-avoiding random walk
obtained with this procedure.
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