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Abstract. The common effective mass theory for excitons is reviewed. It is pointed out
that there is a close agreement between this theory and experiments for all excitonic states
except for the case n=1. In view of the attainable high optical resolution, this deviation
is rather substantial in modern spectroscopy. We ascribe this deviation mainly to the use
of static dielectric constant for all exciton radii and partly to the truncation of the effective
Hamiltonian expansion at \/2 terms. The ordinary theory is extended here by devising

a suitable interpolation formula for a non-static dielectric function and expanding the
effective Hamiltonian upto 4 terms. The solutions of the extended effective mass

equation are obtained for n=1 excitons by the variational method and for higher states
by the perturbation method. The results of the extended theory show remarkable agree-

~ ment with experiments.

The Common Effective Mass Theory (EMT)
for excitons which is briefly reviewed in the next
section is known to represent, to a degree of approxi-
mation, the exciton spectra of many!-3 semicond-
ucting and insulating solids. The results of this
theory agree very well with experimental findings
except for the tightly bound excitons, particularly the
1S excitons. The discrepancy between theory and
experiments is a general effect and is also enormous
on spectroscopic standards (340 cm~! in Cu,0). 1n
the present paper we have proposed that the discre-
pancy is due largely to the use of the statistic di-
electric constant € for all exciton states and partly
to the termination of the effective Hamiltonian
expansion at V2 terms. We emphasize the point that
in a dielectric medium the screening of charges
diminishes with decreasing distances between them.
The conventional dielectric constant is actually not
a constant quantity. The Bohr radius of the IS
excitons is smallest and the dielectric constant must
be replaced by a dielectric function which depends on
the separations between the electron and the hole. In
fact, we have derived such an expression and it is of
the form of an interpolation formula having the
desirable feature of approaching unity for smaller
separations (bare Coulomb potential) and the static
constant for larger separations between the charges.
We present an extension of the common EMT by
incorporating a variable dielectric function into the

effect wave equation and also by expanding
the effective Hamiltonian upto the V4 term. We
then set out to solve the proposed extended effective
Schrodinger wave equation (EESWE). The initial
order of magnitudes calculations shows that for states
n>2 the correction terms of the dielectric response
and the V4 term of the band structure can be con-
sidered as pertubations on the zero order EMT. For
the state n=1, however, the dielectric correction term
is larger than 4 and is comparable with the zero
order term. Therefore the solution of the EWE for
the IS exciton states was obtained by the variational
method. Separate expressions have been obtained
for the ¥4 correction and the dielectric responses.
The proposed theory shows that the hydrogenic n—1
degeneracy existing in the zero order theory is lifted
and in the case of 2S and 2P states the difference
should be optically resolvable. Finally, the extended
EMT has been applied to the exciton spectra of Cu,O
and CuCl. Good agreement has been found between
the theory and the experiments. A detailed exposition
of the comparison between our calculations and the
experimental observations will be reported in our
next communication.

I. Review of Ordinary Effective Mass Theory (EMT).

The effective Schrodinger equation (ESE) for
Wannier excitons as discussed by many authors4-6

1S

309



310 M. A. KHATTAK AND RALPH R. GOODMAN
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where UK( §) are related to the exciton wave functions
Y. In fact in the exciton basis functionsé n//E_B_, UK(E)
are defined by
i —iK.B/2 -
\[’I_(__ % s U_I_((_E) \’/KB B (2)

Ec (ke) is the energy of an electron in the conduc-
tion band, —Ey (kh) is the energy of a hole in the

valence band, B is the electron-hole separation and

2
[
diluted by the dielectric constant €. K =Ee —Eh is

represents the electron-hole potential energy

the wave vector of an exciton formed by raising an
electron from a state kh in the valence band to a

state ke in the conduction band. It is known§:?

that the discrete line absorption spectrum is due to
K =0 excitons. Therefore, for the sake of simplicity,

but without loss of generality of the present article,
we shall assume K =0. Then Eq. (1) reduces to
: : e2
[Ec(-lz)-EU(_lg_ETa] Up-EUg -0
Solutions of this equation will now be quickly
reviewed. We call them zero order solutions.

Let € in Eq. (3) be replaced by the static di-
electric constant €,. Assume that the valence and
conduction bands are non-degenerate, isotropic and

have extrema at k=0. Then for -Ife and ]_( which
are small compared with the size of the Brillouin
zone, the band energics are given by
tzkez
By ko) =B0)+ —5— )

2me

£2KD
E (k) =E (0)— — . (5)
Mh
Replace Ee and lih by —iV in (4) and (5) and
substitute in (8). It gives
#2 i (
1
4 1* and E g(0)= E C(O)—EU(O)

m
e my

where —1— =

is the energy gap at k=0.
This is the equation for hydrogen atom with an

effective charge e—O from which we conclude that

the bound states energies of excitons are given by
pet

En—_—Eg—mz ...(7)
and the function U(p) is a hydrogenic function

having the form
Unlm (B)= Nn]m Rn] (p) Y]m (es ¢) . .(8)
From Eq. (2) and (8) and the assumption that k=0,

the exciton wave functions are

V=2 U (B)¥p v 19
3

showing that U n(ﬁ) is an envelope function to the

zero order function of the entire electrons system.
The frequency v of the absorption lines of the crystal
corresponding to the direct?:8 or vertical transitions is
pet

hv=Eg TR ...(10)
The above simple theory which we will call the zero
order effective mass theory (EMT) for excitons repre-
sents to a degree of approximation the exciton
spectrum of many crystals, e.g. Cu,O, CuCl, CdS9 10
but an increasing discrepancy occurs with decreasing
order of the quantum number n. The discrepancy
is a general effect and by spectroscopic standards it
is also substantial for the n=1 line. For example, for
Cu,O! the deviation is 2.49, for the n=1line but is
approximately 0.5 per 104 for the lines n>2. For
CuCl7 the deviation is 0.79 for the n=1 but is less
than 1 part per 104 for the n=2 and n=3 lines.

We account for these deviations by making an
improvement on the zero order theory. We do this
by modifying the potential energy operator by a j-
dependent dielectric function given by Eq. 11 as
well as expanding the kinetic energy operator of the
effective Hamiltonian upto the fourth power of the

operator k= —i{/.

II. The Extended Effective Mass Equation

A. Incorporation of the Non-static Dielectric
Function. 1t is obvious that the screening of the
interaction between two charged particles in relative
motion inside a dielectric medium should depend on
the frequency of their internal motion. We will
regard € to be a non-static dielectric constant.* We
expect that when two particles are very close, the
frequency of their internal motion will be so high
that neither the ion-cores nor the extra-core valence
electrons can follow this rapid motion. Polarization

*Strictly speaking,eis no longer a constant. Dielectric

function, dielectric coefficient or screening factor seems more
appropriate.  All of these terms will, however, be used in the
sense of Eq. 11.
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effects will thus be absent and the dielectric constant
will then be unity. On the other hand, when the
particies are far apart, the lattice of the crystal as
a whole can respond to the relatively slow motion of
the particles. Secreening of the interaction will thus
be essentially complete and € will be the static di-
electric constant.

A definite mathematical expression for the di-
electric constant E’B)’ possessing the desirable feature
1\

of interpolating between the two limits E(ﬁ)——ﬁ as
as B—>0 while EB)—+EO as P —> oo isderived in
\

appendix A.
The result is

1521yl
€p & 6 [

sy =
where Kq and Ky

e Xep ;— e_e“hB] a1

L are the characteristic screening

distances of the crystal for the electron and the hole

1

and Kh_ 1 the screening

respectively. For B> Ke_

of the interaction between two charges is nearly com-

plete. For 5<K;1 and &, ! the screening is break-

ing down and approaches rapidly towards zero for
# approaching zero.

Incorporating Eq. 11 into Eq. 3, the ESE for
excitons (K=0) in the crystalline dielectric becomes

e2
g U ... =EU
ST 2

%p] (@ £

e

B. Expansion of EME to v* To extend the
expansion of Fq. 12 from AZ2 upto V4 terms,
we will consider only crystals having cubic symmetry.
The expans'on of the band energies E, (k), n=c, U,
up to k4 terms is given in appendix B. For k (to be
replaced by —i V) close to k=0, we get the approxi-
mate expression

£2k2

9 2 2y2
En(l)=En@)+ B +oli 4y 4]

The ccefficents Cn in the above equition depends
upon the crystal structure as well as the band structure
of the material. It can be calculated in terms of the
measurable parameters of the crystal. In particular,

* .
Cn involves the band mass m of a charge carrier

and the lattice constant of the crystal. For an E.C.C
crystal, Cn has been calculated in appendix B for
application to cases of interest, i.e. Cu,O and CuCl.
Replacing k by—i ¥ in Eq. 13 and notiﬂ?g the Seﬁn-

ing relations for the effectives masses m, and m for

[Ec(_i@—.EU(-—ly_)—
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an electron and a hole, we have

: 1272 4
Ec (-iv)=E_0)- om,* +C.V
ST £2 2 :
Eu(—1V)—Eu(o)+ ———————2mh* +CuA
From Eq. 11, 12, 14, and 15, we finally get the
extended EME for excitons as

... (14)

e PILZATS

2 s R .(15)

—ek6+ —khp
- 3——751—-]‘%m ~(E-Ey) Ug
..(16)

where

E,= E.0) ~ Eyo) S0
L 68— 1 ...(18)
C,~C=¢6 ...(19)

III. Solution of the Extended EME
Before we set out to solve Eq. 16 we would like
to point out the following two limiting cases.
(i) B)) the lattice constant, a.
In this case the w4 term is much less than the

1

U2 term, and U(B) is slowly varying. ~ Since K .~

and Kh_ 1 are of the order of few lattice constants,

the exponential terms approach zero, while the
remaining terms approach the value

2 e2

— L +€29.§ =i

B € €oB
For large B we, therefore, treat {74 and the exponential
terms as a perturbation on the zeroeth order Hamil-
tonian :

2 02
A Vs b oht

- - (20

= 2u=- 4 (20)
(i) B < a.

~ In this case one cannot establish as simple a

criterion as for the perturbation calculations. How-

ever, it is easy to see that as B approaches zero the
: e2 3
potential energy term approaches 5 e This feature

of the potential energy term is quite useful in selecting
a suitable trial function for the variational method
which we plan to use to the next section for the n>1
exciton states.

A. Calculation of the n=1 Exctiton levels hy

Variation Method.
Choosing the units
pest ol
Bealee s .. (21)
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the effect wave Eq. 16 in excitonic units reads as

2, 20€
[ S T v 5 Eoﬁ
L B
gl‘“——‘zﬂ“h ”(UB) —€U@ ...22)
where ,
€=E-Eg . A23)

is the binding energy of the exciton. In the present
units, the units of energy and length are

2 m

aex—-u—ez—-? aH .(24)
_wet  u ok
ex =577 =Ry ..(29)

Ry and ay are the conventlonal Rydberg and the
Bohr radius.

We try the hydrogenic function for the state n=1
containing a variation parameter as a solution to
Eq. 22. Trial solution is then

Uy (@, B)=Ryq (af) Y0 ..(26)
From the table in appendix D and the normalization
condition on Uy («f) we find that

3 e
Uy (e, B)=22"12 e=% v ,0 .27
The expectation value of the Hamiltanion operator
Eq. 22 in the state of the trial function Eq. 27 is

€1(0) =< | _vz_% @) v2+2ae

€
[ l—ig:;—?—_—hg]{h> (28
It is straightforward to evaluate the right hand side
of Eq.28. We obtain
€'0)=a2— 20+ 5Ccva4 +2A%

0
[ o Qo3 D03
(a—Ke)z (20c+xh)3
Minimizing €; («) with respect to the parameter «
requires

«(29)

3\
& @
+?AE | €  €al
60 [ (20(-]- Ke)z (2m+Kh)2]
2AE[ 83 83
g € [(2¢+Ke)3+(2¢+,<n)3]=0 ...(30)
This is a sixth degree equation in «. Finding its

roots «g, in terms of the given parameters of the
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crystal Ccv’ €, K, and Ko the energy of the n=1

exciton state in a particular crystal can be calculated.
The energy of the state after somc simplification of
Eq. 29 is obtained to be

299 e,
3 Coyy e
€ 0Tg

L S
[(Hzai)z (1 2?)]

B. Solution of the Wave Equation for n>>2 States

¢ 2
=a
: 0

The Perturbation Approach
In this case we write Eq. 22 in the alternative
form
[—Z EB+Ccvv E —(e = LA _Khﬁ)]
U@ =g U(@ .-:(32)

For n> 2, the exciton orbits in dielectric crystals are
approximately equal to or greater than 20 a, where
a is the lattice constant. It was pointed out earlier
that for such cases the last two terms can be con-
sidered as a perturbation as the first two terms. The
solutions of the zeroeth order Eq. 6 are then given
by Eq. 8.

To the first order of the perturbation the exciton
energies for the states n>2 are

1 iy |
6nl =_62 2t Ccu:lé - nlm | v41 U(r)11m>
0
2= TG el P 0
‘§<Unlmll 5 ]'U e e

Evaluating the integrals* contained In the above
equation we obtain that for n> 2

1 _4Ccv [3 1
4n 141

" (d)
L nl Ge )
0 0
..(39)

The last two terms in Eq. 34 are respectively
the k4 and the dielectric corrections to the zero order

hydrogenic energies.

A general expression for the dielectric correction
terms given by

s m

(d) 17 e BTrertgsrre
£k k) =5 &\ g anI>
..(39)

“*For the evaluation of some of the integrals and the be:
haviour of the hydrogen functions Pauling and Wilsonl!! as
well as Condon and Shortley!? are recommended.
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is not attempted. However for thoss values of n and
1 which really matter in Wannier excitons Eq. 35 is
evaluated. For evaluations of the integrals in Eq. 35,
the hydrogenic functions R a1 (B) have to be modi-

fied by the dielectric constant €, A list of these
modified functions (prepared from Pauling and Wil-
son!) is given in appendix C. The results of cal-

culations for Cgl(ke, kh) is given below :

4 gy
£20 1€z

2 4= 3 :
i=§, h[[l +€ok; P [1+6KP *U+ed§1"4]

: ...(36a)
d _g-1 goivild & ...(36b)
&t Wi=§,h [1+6&k,]*
d ¢€-1 4 S [ 729 1944
&30 79y 2187, & | LE+&KP TTE+EKT
1944 1728 480 ]
= EL ...(36¢
ekl FrekP TEreKE ] 0%
d 6G-1. 8
€317 79 g2 218
216 288 120 ]
- + ...(36d
i&[[%‘*‘ﬁ)ki]" [§+6€ok ]~ [§+k.16 o
d €-1 8 24 263
&2~ 9¢; 2187 gL%Jreokj]ﬁ o358
Eq. 31 and 36 are general equations for the
‘energy levels of Wannier excitons. For a parti-
* #*
cular crystal, its parameters m, , m, Ccv’ ke, kh’

if known are to be inserted in the above equations.
We apply them to the exciton spectra of Cu,O and

CuCl. The results of our calculations and comparison

‘with experimental data will be reported in our next
communication,

IV. Discussion

In order to apply the extended effective mass
theory, developed in the preceding sections, to any
specific case, we need to know the various parameters

&k *

m, , mp, Cc’ Cv’ €, ke and kh. At present, how-
ever, all of them are not known to us from experi-
“ments. < One needs to calculate Cc’ Cv’ ke and kh

from theoretical considerations. These calculations
have been carried by the authors and will be reported
in our next communication. The screening parameters
k. and kh were calculated from the exciton spectra
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of the crystal under consideration whereas Cc and
CV were computed from the band structure and

crystal structure of the material. Comparison of
theoretical results with experimental findings suggests
the success of our proposed theory. The theory
shows that the n=2 state splits in principle into two
optically resolvable states whereas the n=1 degene-

racy of higher states is lifted but not to a resolvable
extent.

It may be noted that solutions of the EEME (Eq.
16) were obtained by the variational method for IS
excitons and by the perturbation method for the higher
states. It seems possible and more desirable to attempt
a single unified method of solving the EEME which
will be valid for all excitonic states and give the
solutions in a closed form of known functions.

Apperdix A. Space dependent interpolation of
the dielectric constant of a semiconductor. In this
aprendix we wish to show the validity of the inter-
polation formula for the dielectric coefficient € (B).
Stnce the Fourier transformat of the unscreened

Coulomb potential —lr is g—;, therefore, the screen-

ded potential is given approximately by
9 =
Vs(r)=dm f C%"___ i
entire = = (4, 8=0) ~
space
where g is a reciprocal lattice vector.

Forrsemiconduct.ors at low temperatures (strictly
T=0°K) the screening factor

...(A])

4rce2

CChrqle 25 UkS
€o o= | e S s
@. 0 q?

X
Uck Ec(k+9)—Ey(k)

...(A-2)
Let us note at this stage that as gq-—0, €(q, 0)>&

whereas when q tends towards the zone boundary,
€ (q, 0)—1. Therefore, the expression for V(r) has

the correct asymptotic behaviour in that it approaches

i as_ r approaches -infinity. In order to include

€ot

the screening effects for all values of r we follow
Hermanson and Phillips!3 and define the r-dependent
dielectric coefficient by the equation

1
Vs(r)=-—-—-——6 ok .. (A-3)
Comparing Eq. A-3 and A-1, we get
iq.t
L L St A4
e I Fe@o e (4
entire ~ =

space
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The next step is to calculate € (g, 0). Since
€ =€(q=0,0) we obtain from Eq. A-2

. f(q)
€(q, 0)=1+(€o‘1)f§—%) ...(A-5)

where f(q) is the second term on the right hand side

of Eq. A-2. For a large energy gap and hole mass
very large compared with the electron mass Herman-
son has developed a Lorentzian expression for f(q)
and consequently calculates € (r) to be given by

Livses doigeComl) g7 568 0 20y

&(1)E %1€ €o

where the dielectric breakdown length « . is treated
as a parameter. For hole mass comparable with the
electron mass and energy gaps of the order of capital
photon energies we replace Eq. A-6 by

— KL T — K. T
Lo, Gl [__e B gl ]...(A-7)
€M & €o 2
Letting r equal to g we get Eq. 14.

If an analogy is drawn between Eq. 7 and Haken’s14
Interpolation formula in which phonon-electron
interactions are responsible for the modificatton of
the static dielectric constant then Ko and K are

related to a characteristic frequency of the crystal, w,
and the effective masses of the electron and hole by

*
2m, w
Ki=(T); i=e, h

Appendix B. Expansion of E (k) and calculation
s

...(A-8)

of Cnm :
Band states satisfy the equation
%l[/ n]i': En]E ‘)bn]\; o (B-l)
Let
. =N"%I§e“5'5 ap (t=R) dr ...(B-2)
then
S kR
Ech) = - €R ¢ ...(B-3)
where
Sor=[20A 2, C-Rdr  ..B4

and a (r) are Wannier# functions.

We consider an F. C. C. crystal (Cu,0) and
approximate Eq. B-3 by extending the summation
only to nearest neighbours. For an F. C. C. crystal
the nearest neighbours are at
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BNN=(-4--1’ il)‘%9 (i’ s il) ‘g—‘

it (. :L2DS . (B-5)
where d is the edge length of the cube. Assuming

an s-character and negligible overlap of the Wannier
functions ZnRNN will be the same for all Ryy. To

fourth order of k we therefore obtain from Eq. B-3
Erwy = Cn(o) * en1, 1,0 dz

KA o Bl 3K kﬂ B-8
[—* +~ﬁ-(x+ y+ Z+.... % Z/”( )

For a conduction band having energy minimum at
k=0, we let

£2
d2=——

2me

and similarly for the valence band having a maximum
at k=0 we let

TICSH K30 i sl

@ = (-9)
tacat ¥ 1, 1, 8 2m;
Hence making this substitution,
£2k2 £2d2
E = + =
€@~ O " om* o6m]
4 4 202
[ Rgkyk ook, ky] ...(B9)
£2k2 £2d2
E - = o
v(k) &v() 2m ; 96m ;

4 4 2 2
[ kgtky+oo 3k, k] ..(B-10)

Now making spherical approximation, i.e. replacing

DO Sy R ) YD :
2(1(x ky+ky k. +kZ kx) by 3/5 k4, etc., we obtain

212 242
E (k)= 2 ©) + ﬁk* - td* k4 ...(B-11)
il * 2mh 80 m
e
212 242
E (¥ =C(0)" “* S —~ k¢ . .(B12)
- i 2m 80 m
e h
Hence the coefficients of the k4 terms are
+2d2
C =- * ...(B-13)
c
80 m
e
242
C = td* ...(B-14)
v
80 m,
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and
£2d2 :
— -— B e ———— ve s '15
Ccv Cc Cv 80 u (Ba15)
where p is the reduced electron-hole mass.
2
In excitonic units £ =2u =CT =1
2
S ....(B-16)
<V 4042
ex

Appendix C. The Hydrogenic Radial Wave Funct-
ions Rt (r/€y). In a system of units £ =2p=

€2/2=1 and an interaction potential energy —e2/€yr
the radial functions are listed below:

Rig=€,~ 122 ¢~ "o
= 67“3/2

e @=1fey e~ 12 &
e E:’;/Zr/eo 12 6o
R3o= 25—0;;12 (27 —18Y/Eo+2(r/60)2)e"r/3 €
o js%z 1o 6—riepe o
2= :—16‘1,_3-—30/2 e &

For the continuation of this list Pauling and Wilson
or Condon and Shortley are recommended.

315

References

1. J. H. Apfel and L. N. Hadley, Phys. Rev., 100,

2,

i

10.

1.

12.

13.

14.

1689 (1955).

S. Nikitine, Progress in Semiconductors, A. F.
Gibson, et al. eds., Vol. 6, John Wiley, N. Y.,
USA (1962).

R. J. Elliot, Phys. Rev., 108, 1384 (1957).
G. H. Wannier, Phys. Rev., 52, 191 (1937).
J. Dimmock, Optical Properties of Semiconduc-

tors and Semi-metals, Vol. 3, Academic Press,
N. Y., USA (1966).

R. S. Knox, Solid State Phys., Suppl. 3 (1967).
R. J. Elliot, Phys. Rev., 108, 1384 (1957) and
R. J. Elliot, Phys. Rev., 108, 1384 (1957).
Optical Properties of Solids, Proc. Intern. School

Phys., E. Fermi Course XXXIV, Academic
Press, N. Y., USA (1966).

D. G. Thomas and J. J. Hopfield, Phys. Rev.,
116, 573 (1959); Phys. Rev., 124, 657 (1961).

D. G. Thomas, J. J. Hopfield and M. Power,
Phys. Rev., 119, 570 (1960).

Pauling and Wilson, Introduction to Quantum
Mechanic, McGraw-Hill, N. Y., USA (1935).

E. U. Condon and G. H. Shortley, The Theory
of Atomic Spectra, Cambridge Univ, Press
(1953).

J. Hermanson and J. C. Phillips, Phys. Rev., 150,
652 (1966).

H. Haken, “‘Theory of Excitons, II” in Polaron
and Excitons, C. G. Kuper and G. D. Whitfield,
Eds., Plznum Press, N. Y., USA (1963).



