SOME REACTIONS WITH 4-ARYLIDENE DERIVATIVES OF 5(4)-OXAZOLONE AND 5-IMIDAZOLONE

A. A. AFIFI, G. H. SAYED, H. A. AHMED and I. G. SHENOUDA

Chemistry Department, Ain Shams University, Abbassia, Cairo, Arab Republic of Egypt
(Received December 21, 1976)

Abstract. 4-Arylidene-2-phenyl-5(4)-oxazolones (Ia-e) react with (c-, m-, and p-) aminobenzoic acids to give arylidene-hippuric carboxyanilides (IIa-k). 4-Arylidene-1-hydroxy-2-(2'-furyl)-5-imidazolones (IVa-d) react with acid chlorides to give 4-arylidene-1-aroyloxy-2-(2'-furyl)-5-imidazolones (Va-h). Also the reaction of (IVb-e) yield (VIa-e) was discovered.

It has been reported that 4-arylidene-2-styryl-5(4)-oxazolone reacts with aminobenzoic acid to give either carboxyanilides or 5-imidazolone.

In the present investigation, the authors have investigated the action of (o-, m-, and p-) aminobenzoic acids on 4-arylidine-2-phenyl-5(4)-oxazolone

(Ia-e) in refluxing pyridine. It was found that the compounds (Ia-e) react with o-aminobenzoic acid to give arylidene-hippuric-2'-carboxyanilide (IIa-e).

m-Aminobenzoic acid gave with (I*a-c*) arylidene-hippuric-3'-carboxyanilide (II*f-h*).

Similarly, p-aminobenzoic acid gave with (Ia, d, and e) arylidene-hippuric-4'-carboxyanilide (IIi-k).

No 4-arylidene-2-phenyl-1-(carboxyphenyl)-5-imidazolone could be isolated (III) from the reaction mixture.

The above mechanism shows that c-, m-, and p-aminobenzoic acids act as aromatic amines in the presence of pyridine.

The ir spectra of (IIa-k) revealed the presence of ${}^{+}NH_3$ stretching band in the region (3180-3080 cm $^{-1}$)², ν_{NH} in the region (3450-3260 cm $^{-1}$), two $\nu_{C=O}$ of amides in the region (1680-1670 cm $^{-1}$), and (1640-1610 cm $^{-1}$) and normal acid carbonyl in the region (1720-1710 cm $^{-1}$)².

On the other hand, it has been previously stated³ that 4-arylidene-2-(2'-furyl)-5(4)-oxazolone (I*f-i*) reacts with hydroxylamine hydrochloride in pyridine to give 4-arylidine-1-hydroxy-2-(2'-furyl)-5-imidazolone (IV*a-d*).

When compounds (IVa-d) were treated with acid chlorides, viz. acetyl, benzoyl, furoyl and/or p-toluenesulphonyl chlorides in chloroform in the presence of a few drops of pyridine, the corresponding 4-arylidene-1-aroyloxy-2 - (2'-furyl) - 5 - imidazolones (Va-h) were obtained.

The reaction possibly takes place according to the following mechanism. (Scheme 1)

1)
$$H_3^{-1}$$
 $COO^ C_5H_5^{-1}H$
 $COO^ C_5H_5^{-1}H$
 $COO^ C_5H_5^{-1}H$
 $COO^ C_5H_5^{-1}H$
 $COO^ C_5H_5^{-1}H$
 $COO^ C_5H_5^{-1}H$
 $COO^ C_6H_5$
 $COO^ C_6H_5$
 $COO^ C_6H_5$
 $COO^ C_6H_5$
 $COO^ C_6H_5$
 $COO^ COO^ C_6H_5$
 $COO^ COO^ C_6H_5$
 $COO^ COO^ COO^-$

(II)

(Scheme 1)

(Scheme 2)

The ir spectral data of (V) showed a doublet for $^{\nu}C=0$'s of imidazolone ring in the regions (1760-1730 cm⁻¹) and (1665-1640⁻¹) and

 $^{\nu}$ C=0 for ester in the region (1825-1770 cm⁻¹) (cf. Table 1).

	Ar	R
	a, C ₆ H ₄ .0CH ₃ (p-)	K
	b, 06H4-0CH3 (p-)	C6H5
	c, C6H4-C1 "(o-)	H
	d, C6H4-NO2	H
	e.	H
	Ar	X
a;	C6H5	COOH (0-)
b;	C ₆ H ₄ -OCH ₃ (p-)	COOH (0-)
<u>C</u> ;	C6H3-CH2O2 (3,4)	COOH (0-)
d:	CH=CH-C6H5	COOH (0-)
<u>e</u> ;	\$	COOH (<u>o</u> -)
f:	C6H5	COOH (m-)
E:	C6H40CH3 (P-)	COOH (m-)
h;	C6H3-CH2O2 (3,4)	COOH (E-)
1;	C6H5	COOH (P-)
1:	C ₆ H ₅ -CH=CH	COOH (p-)
<u>k</u> ;		COOH (p-)

TABLE 1. IR SPECTRAL DATA FOR 4-ARYLIDENE-1-AROYLOXY-2-2'-FURYL-5-IMIDAZOLONE (V).

Compound No.	vC=O of imidazolone cm ⁻¹	νC=O of ester cm ⁻¹	
Va	1735, 1650	1780	
Vb	1750, 1655	/1 al-	
Vc	1730, 1645	1770	
Vd	1735, 1650	1795	
Ve	1750, 1665	1825	
Vf	1750, 1650	1780	
Vg	1760, 1650		
Vh	1730, 1640	1775	

In the present investigation, the hitherto unknown reaction of 4-arylidene-1-hydroxy-2-(2'-furyl)-5-imidazolone (IV) with hydrazines was discovered.

Thus, 4-arylidene-1-hydroxy-2-(2'-furyl)-5-imidazolone (IV) reacts with hydrazines and/or phenylhydrazine in ethanol or acetic acid to give 4-arylidene-6-(2'-furyl)-3-oxo-1,2.3-trihydro-1,2,5-triazines (VIa, c, d, and e) and 4-arylidene-6-(2'-furyl)-3-oxo-1-phenyl-2, 3-dihydro-1, 2, 5-triazine (VIb).

The ir spectra of (VI) showed $\nu_{C=O}$ in the region (1710-1660 cm⁻¹), and ν_{NH} in the region (3430-3140 cm⁻¹) (broad) (cf. Table 2).

TABLE 2. IR SPECTRAL DATA FOR TRIAZINES (VI)

Compound No.	$^{\nu}C=0$ cm ⁻¹	νNH cm ⁻¹		
VIa	1660	3420-3140		
VIb	1710	3270		
VIc	1680	3420-3280		
VId	1670	3430-3220		
VIe	1675	3420-3210		

The reaction possibly takes place according to the following scheme (Scheme 2).

Experimental Procedure

Melting points are not corrected; ir spectra were measured with Perkin-Elmer Infrared Model 137, and Unicam SP 1200 Infrared Spectrophotometer using the KBr wafer technique.

Action of Amino Benzoic Acids on 4-Arylidene-2-Phenyl-5(4)-oxazolones (Ia-e)/(Formation of (IIa-k). A solution of 4-arylidene-2-phenyl-5(4)-oxazolone (Ia-e) (0.1 mole) in pyridine was treated with aromatic amino acid (0.1 mole) and the reaction mixture was refluxed for (3 hr.), then cooled and poured on crushed ice and then treated with ice-cold HCl. The precipitated product was filtered off, and recrystallized from suitable solvents (cf. Table 3).

Reaction of 4-Arylidene-1-hydroxy-2-(2'-furyl)-5imidazolone (IVa, b, d and e) with acid chlorides; Formation of 4-arylidene-1-aroyloxy-2-(2'-furyl)-5imidazolone (Va-h).

TABLE 3. FORMATION OF ARYLIDENE-HIPPURIC CARBOXYANILIDES (IIa-k).

Products	M.P. °C	Yield	Solvent of crystalli- zation	M.F.	Analysis (%)	
Troducts					Req.	Found
IIa	208	80	E	$C_{23}H_{18}N_2O_4$	C, 71.49	71.85
	N. 7-81				H, 4.7	5.01
					N, 7.25	7.49
Πb	240	05 O ₂ M ₂ M ₂ O ₂ O ₃	E	$C_{24}H_{20}N_2O_5$	C, 69.22	69.09
		C-E-01-32-	A. X		H, 4.84 N, 6.73	5.0 6.52
6,80	N. V.2E	O Wall O	4			
IIc	242	80 00	E	$C_{24}H_{18}N_2O_6$	C, 66.97 H, 4.22	66.69 4.36
					N, 6.51	6.49
44.32	225	CieHIIN3O6	Е	CHNO		
IId	235	65		$C_{25}H_{20}N_2O_4$	C, 72.8 H, 4.89	72.83 5.04
		C21H13N3O6			N, 6.79	6.51
IIe	170	70	Е	$C_{21}H_{16}N_2O_5$	C, 67.01	66.99
He	170	OZ HE NED	Hospiele a	C211116112O5	H, 4.29	4.07
					N, 7.44	7.64
IIf	248-51	75	E	C23H18N2O4	C, 71.49	71.63
16. 7	N. 8.04			23-18-2-4	H, 4.7	4.52
	bas		lomate	ed bisa mas	N, 7.25	7.35
llg	239-41			C24H20N2O5	C, 69.22	68.94
				agnit di nasa	H, 4.84	5.08
					N, 6.73	6.66
IIh	231	70	M	C24H18N2O6	C, 66.97	66.65
					H, 4.22	4.40
					N, 6.51	6.32
IIi	230	80	M	$C_{23}H_{18}N_2O_4$	C, 71.49	71.77
					H, 4.70	4.85
					N, 7.25	7.51
IIj	246	OID (A 70 In)	M	$C_{25}H_{20}N_2O_4$	C, 72.8	72.61
					H, 4.89	4.80
		$C_{14}H_{10}N_4O_4$		1ð	N, 6.79	6.47
Πk	240	70	M	$C_{21}H_{16}N_2O_5$	C, 67.01	66.93
59.47			a	10	H, 4.29	4.50
4.14	H. 3.72				N, 7.44	7.61

E=ethanol; m=methanol

Table 4. Formation of 4-arylidene-1-aroyloxy-2(2'-furyl)-5-imidazolone (Va-h).

Product	M.P. °C	Solvent Yield of crystalli- M.F.		ME	Analysis (%)	
banod	10931	Tield	zation	IVI.I'.	Req.	Found
Va	175-8	71 PO21H18N2O4	E	C ₂₁ H ₁₄ N ₂ O ₄	C, 70.38 H, 3.93 N, 7.81	70.97 4.28 7.34
Vb	151	31	*	$C_{21}H_{16}N_2SO_5$	C, 61.75 H, 3.94 N, 6.85	61.94 4.34 6.54
Vc	180-1	92	A	$C_{22}H_{16}N_2O_5$	C, 68.03 H, 4.15 N, 7.21	68.51 4.42 6.80
Vd	178-9	76	E	$C_{20}H_{14}N_2O_6$	C, 63.49 H, 3.72 N, 7.40	63.52 3.74 7.35
Ve	162-4	45 40, M ₀ M ₂ O ₄	*	C ₁₆ H ₁₁ N ₃ O ₆	C, 56.30 H, 3.24 N, 12.31	56.44 3.62 11.69
Vf	160	75	Е	$C_{21}H_{13}N_3O_6$	C, 62.53 H, 3.24 N, 10.41	62.94 3.69 9.86
Vg	154-5	33	*	C ₂₁ H ₁₅ N ₃ SO ₇	C, 55.62 H, 3.33 N, 9.26	55.96 3.54 8.86
Vh	182-3	OSM 87	М .	$C_{19}H_{12}N_2O_5$	C, 65.51 H, 3.47 N, 8.04	65.42 4.00 7.57

A=acetic acid; E=ethanol; M=methanol; and *decomposes on crystallization

TABLE 5. FORMATION OF TRIAZINES (VIa-e).

Products	M.P. °C	Yield	Solvent of crystalli- zation	M.F.	Analysis (%)	
Troducts					Req.	Found
VIa	318-21	20	B/M	$C_{15}H_{13}N_3O_3$	C, 63.59 H, 4.62	63.73 4.67
					N, 14.83	14.65
VIb	210-2	47	Е	$C_{21}H_{17}N_3O_3$	C, 70.18 H, 4.76 N, 11.69	70.76 5.04 11.23
VIc	206	20 20	E	C ₁₄ H ₁₀ N ₃ ClO ₂	C, 58.44 H, 3.50 N, 14.60	58.98 3.99 15.36
VId	206-7	16 C ₂₁ H ₁₆ N ₂ O ₅	В	C ₁₄ H ₁₀ N ₄ O ₄	C, 56.37 H, 3.35 N, 18.78	56.16 3.67 18.71
VIe	223-5	61	Е	C ₁₂ H ₉ N ₃ O ₃	C, 59.25 H, 3.72 N, 17.27	59.47 4.14 16.99

B=benzene; E=ethanol; and M=methanol

A solution of (IVa, b, d and/or e) (0.1 mole) in chloroform and a few drops of pyridine was treated with acetyl, benzoyl, furoyl, and/or p-toluenesulphonyl chlorides (0.1 mole) in chloroform at room temperature; the reaction mixture was left to evaporate. The solid products were recrystallized from the proper solvent to give (Va-h) (cf. Table 4).

Hydrazinolysis of (IVb-e): Formation of (VIa-e). A solution of imidazolone (IVb-e) (0.1 mole) in ethanol or acetic acid was treated with hydrazine hydrate (excess) or phenylhydrazine (0.1 mole). The reaction mixture was heated under reflux for 3 hr., then cooled. The solid products were filtered

The ir spectrum of (VI) revealed PC=N at

off and recrystallized from suitable solvent to the corresponding triazines (VIa-e) (cf. Table 5).

References

- 1. A. F. M. Fahmy, and M. O. A. Orabi, Indian J. Chem., 10, 961 (1972).
- 2. R. M. Silverstein and G. C. Bassler, Spectrometric Identification of Organic Compounds, John Wiley and Sons, Inc., New York, London, (1967) p. 97.
- 3. A. F. M. Fahmy, A. A. Afifi, and I. G. Shenouda, J. Chem. U. A. R. (accepted for publication).