OXAZOLONES ${ }^{1}$

Part II. Synthesis and Reactions of 4-Arylidene-2-[2'Furyl]-5 (4)-Oxazolones

A.F.M. FAhmy, A.A. AFIFI and I.G. Shenouda
Chemistry Department, Ain Shams University, Abbassia, Cairo

(Received April 20, 1977; revised August 3, 1977)

Abstract

Arylidene -2- [2' -furyl] -5 (4)-oxazolones (I a - d) were prepared. Ortho, meta and para-aminobenzoic acids react with (I a-d) to give α-[2'-furamido-cinnamic acid carboxyanilides (II a-- f), (I a-d) react with aromatic amines to give $\alpha-\left[2^{\prime}-\right.$ furamido $]-N$-substituted cinnamamides (III $a-h$). Also (I $a-d$) react with hydrazine and hydroxylamine hydrochloride to give (IV a-d) and (V a-d) respectively. Azidolysis of (I d) give $\alpha-[$ tetrazoly -(1)] -5-[2'furyl] acrylic acid (VI).

In the present investigation the effect of substitution at position -2 with (2-furyl group); on the mode of reaction of 4 -arylidene -5 (4) -oxazolone was investigated.

4-Arylidene -2-[2'-furyl] -5 (4) -oxazolones (I a-d) were obtained from the reaction of 2 -furoylglycine with aromatic aldehydes in the presence of acetic anhydride and sodium acetate. ${ }^{2}$

I
$\mathrm{a}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{b}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} . \mathrm{OCH}_{3}(\mathrm{p}-) ; \mathrm{c}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4}$.
$\mathrm{NO} \mathrm{O}_{2}(\mathrm{o}-) ; \mathrm{d}, \mathrm{Ar}=2$ - furyd.
$\mathrm{NO}_{2}(\mathrm{o}-) ; \mathrm{d}, \mathrm{Ar}=2$ - furyl.

The IR spectra of (I a-b) showed $v_{\mathrm{C}=\mathrm{O}}$ in the region (1810-1785 cm ${ }^{-1}$).

4-Arylidene -2-[2'-furyl] -5 (4) -oxazolones (I a-d) react with o-, m-, and p-aminobenzoic acids to give the corresponding α - [2'-furamido $]$-cinnamic acid carboxyanilides (II a-f) 1,3

The IR spectra of II a-f show two bands for two amide carbonyls in the range $1630-1610 \mathrm{~cm}^{-1}$ and $1680-1660 \mathrm{~cm}^{-1}$, normal acid carbonyl in the region $1730-1710 \mathrm{~cm}^{-1}$ and bands due to NH in the region $3400-3140 \mathrm{~cm}-1$.

Similarly, 4-arylidene -2-[2'-furyl] -5 (4) -oxazolones (I a-d) react with aromatic amines to give the corresponding $\alpha-$-[2'-furamido] - N -substituted cinnamides (III a-h) ${ }^{1}$.

The IR spectra of (III a-h) showed two amide carbonyl bands in the region $1650-1610 \mathrm{~cm}^{-1}$, and $1680-$ $1660 \mathrm{~cm}^{-1}$ respectively, and bands at $3410-3120 \mathrm{~cm}^{-1}$ due to NH^{\prime}

Compounds (I a-d) react with hydrazines to give the corresponding α - [2'-furamindo] - cinnamic acid hydrazides (IV a-h). ${ }^{1,4}$

The IR spectra of (IV a-d) showed " $v_{\mathrm{C}=\mathrm{O}}$ of the hydrazide in the region $1690-1660 \mathrm{~cm}^{-1}$.

The hitherto unknown reaction of (I a-d) with hydroxylamine hydrochloride in pyridine gave 4 -arylidene -1-hydroxy -2 - [2' furyl $]$-5- imidazolones (V a-d).

Compounds (V a-d) showed in the infrared $v \mathrm{C}=\mathrm{O}$ in the region $1730-1650 \mathrm{~cm}^{-1}, \nu_{\mathrm{C}=\mathrm{N}}$ at $1600 \mathrm{~cm}^{-1}$ and ν_{OH} in the region $3120-2800 \mathrm{~cm}^{-1}$

The NMR spectrum of compound (V c) shows singlet at $\delta 7.0 \mathrm{ppm}$ attributed to one olefinic proton, multiplet at $\delta 7.02 \mathrm{ppm}$ attributed to two protons of β - furyl group, multiplet at $\delta 7.46 \mathrm{ppm}$ attributed to one proton of α-furyl group, and multiplet at $\delta 8.12$ ppm attributed to four aromatic protons.

The mass spectrum of (V b) shows molecular ion (at $\left.\left.\mathrm{M}^{+}, \mathrm{m} / \mathrm{e}=284\right), \mathrm{M}^{+}-0 ; \mathrm{m} / \mathrm{e}=268\right)$ and $\left(\mathrm{M}^{+}-\mathrm{OH}\right.$; $\mathrm{m} / \mathrm{e}=267$). (I d) Reacts with sodium azide in acetic acid to give α - [tetrazolyl-(1)] -5- [2' furyl] -2- furyl acrylic acid (VI). 5

The IR spectrum of VI showed bonded OH stretching frequency in the region $3140-2530 \mathrm{~cm}^{-1}$ and $\nu_{\mathrm{C}=0}$ at $1685 \mathrm{~cm}^{-1}$ and ν tetrazolyl ring at 1100 $900 \mathrm{~cm}^{-1} .6$

All the previous data can be summarized in the following scheme:

Taking all previous data into considerations we can conclude that azidolysis of (Id) involves opening of $\mathrm{C}_{2}-\mathrm{O}$ bond, contrary to the ring opening of the 5 (4) -oxazolone ring (fission of $\mathrm{C}_{5}-0$ bond) with other compounds, viz R-NH2, R-NH-NH2 etc.

Also the substitution in position 2 with 2 -furyl group in 5 (4) -oxazolone, does not affect this mode of reaction.

Experimental Procedure

Melting points are not corrected, IR spectra were measured on a Perkin-Elmer IR model 137, Unicam sp 1200, and Beckman IR-20 IR spectrophotometers using KBr pellet.

4-Arylidene -2- [2'-furyil] -5 (4) -oxazolones (I a-d). A mixture of aromatic aldehyde (0.12 mole), 2-furoylglycine (0.1 mole), acetic anhydride, and sodium acetate were heated on a steam both for 3 hr and then cooled. A solid product was obtained which was recrystallized from the given solvent as listed in Table 1.

Reaction of (I a-d) with Aromatic Aminoacids: Formation of $\alpha-[2$ ' furamido] -cinnamic Acid Carboxyanilides (II a-f). A solution of (I a-d) (0.1 mole) in ethanol containing few drops of pyridine, was treated with σ - m-, or p-aminobenzoic acids (0.1 mole). The reaction mixture was heated under reflux for 5 hr , cooled in ice, and acidified with 20% hydrochloric acid. The solid product was filtered off, and recrystallized from the given solvent as listed in Table 2.

Reaction of Primary Aromatic Amines with (I a-d) Formation of q - [2'-furamido] $-N$-substituted cinnama-
mides (III $a-h$). A solution of (I a-d) (0.1 mole in benzene and/or pyridine was heated with primary aromatic amines, viz aniline, p-toluidine and m-chloroaniline (0.1 mole). The reaction mixture was heated under reflux for 3 hr , and cooled. The solid products were filtered off and recrystallized from suitable solvent as listed in Table 3.

Reaction of Hydrazine with (I $a-d$): Formation of α - [2' furamido] - cinnamic acid hydrazides (V a-d). A solution of (I a-d) (0.1 mole) in ethanol containing a few drops of pyridine was treated with hydrazine and/ or phenylhydrazine (0.1 mole). The reaction mixture was heated under reflux for 6 hr , and then cooled. The solid product was filtered off and recrystallized from suitable solvent as listed in Table 4.

Reaction of Hydroxylamine hydrochloride with (I a-d): Formation of 4-arylidene -1- hydroxy -2-[2'-furyl] -5- imidazolones ($V a-d$). A solution of (I a-d) (0.1 mole) in pyridine was treated with hydroxylamine hydrochloride (0.1 mole). The reaction mixture was heated under reflux for 6 hr and then cooled. The solid product filtered off and recrystallized from suitable solvent as listed in Table 5.

Reaction of Aqueous Sodium Azide-acetic Acid with (Id): Formation of α - [tetrazolyl -(1) -] 5-[2' furyly -2-furyl-acrylic acid (VI). A solution of (I d) (0.1 mole in hot acetic acid was treated with sodium azide (0.4) mole) dissolved in the least amount of water and the reaction mixture heated under reflux on a steam bath for 3 hr , and poured on crushed ice. The solid product was filtered off, and recrystallized

TABLE 1.

Product	M.p.	Yield \%	Solvent of crystallization	Mol. formula		Analysis Req.	\% Found
I a	148-50	51	B/P	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}_{3}$	$\begin{aligned} & \mathrm{C}, 7 \\ & \mathrm{H}, \\ & \mathrm{~N}, \end{aligned}$	$\begin{aligned} & 0.28 \\ & 3.79 \\ & 5.85 \end{aligned}$	$\begin{array}{r} 69.62 \\ 4.13 \\ 5.53 \end{array}$
I b	165-6	28	B	$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{4}$	C, H, N ,	$\begin{array}{r} 66.91 \\ 4.11 \\ 5.20 \end{array}$	$\begin{array}{r} 66.97 \\ 4.15 \\ 4.69 \end{array}$
I c	184-5	50	B	$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{5}$	$\begin{aligned} & \mathrm{C}, \\ & \mathrm{H}, \\ & \mathrm{~N}, \end{aligned}$	$\begin{array}{r} 59.16 \\ 2.83 \\ 9.85 \end{array}$	$\begin{gathered} 59.15 \\ 3.3 \\ 9.53 \end{gathered}$
I d	212	51	A	$\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{NO}_{4}$	C, H, N ,	$\begin{array}{r} 62.88 \\ 3.07 \\ 6.11 \end{array}$	$\begin{array}{r} 62.61 \\ 5.22 \\ 6.32 \end{array}$

$\mathrm{A}=$ acetic acid, $\mathrm{B}=$ benzene and $\mathrm{P}=$ petroleum ether.

TABLE 2.

Compound	Ar	$\begin{aligned} & \text { Position } \\ & \text { of }-\mathrm{COOH} \end{aligned}$	M.p.	$\underset{\%}{\text { Yield }}$	Solvent of crystallization	Mol.		Analysi Req.	\% Found
II a	$\mathrm{C}_{6} \mathrm{H}_{5}$	o-	232	51	B/M	$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$	C,	67.01	66.54
							H, N,	4.28 7.44	4.20 7.00
II b	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}$	(p.) 0 -	225-6	67	E	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$	C,	65.01	65.23
							H ,	4.46	4.64 6.63
II c	$\mathrm{C}_{6} \mathrm{H}_{5}$	m-	230-1	64	N/M	$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$	C,	67.01	6.63
							H ,	4.28	4.41
II d	C6H4OCH				M	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$	N,	7.44	6.77
II d	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}$	(p-) m-	237	80			C,	65.01	65.12
							$\stackrel{H}{\mathrm{H}}$	4.46	4.44
II e	$\mathrm{C}_{6} \mathrm{H}_{5}$				B/M		N,	67.01	6.54 66.93
		p-	155-7	51		$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$	H,	4.28	4.76
							N,	7.44	7.15
II f	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}$	(p-) p -	240	40	M	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$	C,	65.01	65.45
							$\stackrel{H}{\mathrm{H}}$	4.16	4.2
							N,	6.89	6.5

$B=$ benzene,$E=$ ethanol and $M=$ methanol.

TABLE 3

Medium of re: :tion is pyridine. $\mathrm{B}=$ benzene, $\mathrm{E}=$ ethanol and $\mathrm{M}=$ methanol.
TABLE 4.

Compound Ar	R	M.p.	$\underset{\%}{\text { Yield }}$	Solvent of crystallization.	Mol. formula		Analysis Req.	Found
IV a $\quad \mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	204-5	98	B	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$	C, H, N,	$\begin{array}{r} 69.15 \\ 4.93 \\ 12.09 \end{array}$	$\begin{array}{r} 69.32 \\ 5.37 \\ 12.30 \end{array}$
IV b $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}$ (p-)	$\mathrm{C}_{6} \mathrm{H}_{5}$	204-5	57	E	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$	C, H, N ,	$\begin{array}{r} 66.83 \\ 5.07 \\ 11.13 \end{array}$	$\begin{array}{r} 67.20 \\ 5.20 \\ 10.67 \end{array}$
IV c C $6_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$ (o-)	H	123-4	100	B/M	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{5}$	C, H, N ,	$\begin{array}{r} 53.17 \\ 3.82 \\ 17.71 \end{array}$	$\begin{array}{r} 53.70 \\ 4.50 \\ 16.98 \end{array}$
IV d 2-furyl	H	179	89	M	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$	C, H, N,	55.17 4.24 16.08	$\begin{array}{r} 55.33 \\ 4.47 \\ 15.51 \end{array}$

$\mathrm{B}=$ benzene, $\mathrm{E}=$ e thanol, and $\mathrm{M}=$ methanol.

TABLE 5.

$\mathrm{M}=$ methanol, and $\mathrm{B} / \mathrm{M}=$ Benzene/methanol.
from benzene/methanol to give VI, m.p. 201°, yield 17%. (Found C, 52.74; H, 3.24; N, 20.47. $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{4}$ required $\mathrm{C}, 52.94 ; \mathrm{H}, 2.96 ; \mathrm{N}, 20.58)$.

References

1. A.F.M. Fahmy and M.O.A. Oraby, Indian J. Chem., 10,961-4 (1972).
2. E. Erlenmeyer and Kunlin, J. Ann., 316, 145 (1901).
3. M. Bergmann, F. Stern and Witte, Ann., 449, 279 (1926).
4. N. Karel and B. Vojtech, J. Prakt. Chem., 314, 851. 6 (1972).
5. A.I. Awad, A.M.A. Sammour and A.F.M. Fahmy, J. Org. Chem., 30,2222 (1965).
6. E. Lieber, D.R. Levering and L.J. Patterson, Anal. Chem., 23, 1594 (1951).
