VARIATIONAL CALCULUS AND STOKES' THEOREM

Mohammad Ali Khattak
Department of Physics, University of Peshawar, Peshawar

(Received February 2, 1977)

Abstract

Simple calculus of variation has been used to prove Stokes' theorem. The method has the advantage of revealing physically the equality of surface integral of $\nabla \times \underline{F}$ to a line integral of \underline{F} around the boundary enclosing an area. The proposed method can also be extended to a general case when the dot product is replaced by a general multiplication.

Stokes' theorem is a famous and useful theorem of vector analysis. It states that the line integral of the tangential component of a continuously differentiable vector point function F taken around a simple closed curve C is equal to the surface integral of the normal component of the curl of \underline{F} taken over any surface S having C as its boundary

$$
\begin{equation*}
\oint \underline{\mathrm{F}} \cdot \mathrm{~d} \underline{\mathrm{r}}=\iint \underline{\nabla} \times \underline{\mathrm{F}}_{-} \cdot \mathrm{d}_{-} \tag{1}
\end{equation*}
$$

A number of proofs using different methods are available in standard books ${ }^{1-3}$ on the subject. Many of them use Green's theorem for a plane as a prerequisite to prove Stokes' theorem. A proof of the latter theorem is provided here which circumvents this difficulty. The proof is based on simple calculus of variation. It will be seen that the present method is elegant in that it shows more concretely, how the surface integral of $\nabla \times \underline{F}$ over an area equals the line integral of F along the boundary enclosing the area. The procedure also shows that there exists a possibility of an extension of Stokes' theorem when the dot product in the line integral is replaced by either a cross product or a simple algebraic multiplication.

Proof of Stokes' Theorem

Let C be a simple closed curve bounding a surface S. Consider two fixed points P and Q on the curve. Devise a large number of paths C_{1}, C_{2}, $C_{3} \ldots C_{i} \ldots C_{n}$ connecting the points P and Q such that C_{1} and C_{n} together form the original boundary of the closed curve C. Thus

$$
\begin{equation*}
\oint^{F} \cdot d \underline{r}=\int_{C_{i}}^{Q} \frac{\mathrm{~F}}{\mathrm{P}} \cdot \mathrm{dr}-\int_{C_{n} P}^{\mathrm{F}}-\mathrm{dr} . \tag{2}
\end{equation*}
$$

Let us define

$$
\begin{equation*}
\mathbf{I}_{\mathbf{i}}=\int_{\mathrm{C}_{\mathrm{i}}}^{\mathrm{Q}} \underline{\mathrm{~F}} \cdot \mathrm{dr}, \tag{3}
\end{equation*}
$$

then

$$
\oint \underline{\mathrm{F}} \cdot \mathrm{~d} \underline{\mathrm{r}}=\mathrm{I}_{1}-\mathrm{I}_{\mathrm{n}}
$$

$$
\begin{align*}
= & \left(I_{1}-I_{2}\right)+\left(I_{2}-I_{3}\right)+\ldots \\
& \left(I_{i}-I_{i+1}\right) \ldots\left(I_{n-1}-I_{n}\right) \\
= & \sum_{i=1}^{n-1} \delta I^{i} \tag{4}
\end{align*}
$$

where

$$
\begin{equation*}
\delta \mathrm{I}_{\mathbf{i}}=\mathrm{I}_{\mathbf{i}}-\mathrm{I}_{\mathbf{i}+\mathbf{1}} \tag{5}
\end{equation*}
$$

is the small variation in the values of the integrals between the two closely lying paths C_{i} and $\mathrm{C}_{\mathrm{i}+1}$. From Eq. (3)

$$
\begin{align*}
& \delta I_{i}=\delta \int_{-}^{Q} \cdot \underline{d r}=\int_{-}^{Q} \delta(F \cdot d \underline{r}) . \tag{6}\\
& \mathrm{C}_{\mathrm{i}} \mathrm{P} \\
& C_{i} \mathbf{P}
\end{align*}
$$

where the integrand

$$
\begin{equation*}
\delta(\underline{\mathrm{F}} \cdot \mathrm{dr})=\delta \underline{\mathrm{F}} \cdot \mathrm{dr}+\underline{\mathrm{F}} \cdot \delta \mathrm{dr} . \tag{7}
\end{equation*}
$$

As far as the operation on the position vector is concerned, the d-operation and the δ-operation are interchangeable, so that

$$
\begin{equation*}
\delta(\underset{\sim}{\mathbb{F}} \cdot \mathrm{dr})=\delta \underline{\mathbf{r}} \cdot \mathrm{d} \underline{r}+\mathrm{d}(\underset{-}{\mathrm{F}} \cdot \delta \underline{r})-\mathrm{d} \underline{\mathrm{~F}} \cdot \delta_{-}^{r} \tag{8}
\end{equation*}
$$

Hence eq. (5) can be written as

$$
\delta \mathbf{I}_{\mathbf{i}}=\int_{\mathrm{C}_{\mathrm{i}} P}^{Q} \mathrm{~d}(\mathbf{F} \cdot \delta \underline{r})+\int_{C_{i}}^{Q}(\delta \underline{\mathrm{r}} \cdot \mathrm{dr}-\mathrm{d} \underline{\mathrm{~F}} \cdot \delta \underline{r})
$$

The first integral above equals

$$
\left[\underline{\mathbf{F}} \cdot \delta{\underset{\mathbf{r}}{\mathbf{p}}}_{\mathbf{Q}}^{\mathbf{Q}}=\mathbf{O},\right.
$$

because there is no variation at the fixed points P and Q. Hence

$$
\begin{equation*}
\delta \mathrm{I}_{\mathrm{i}}=\int(\delta \underline{\mathrm{F}} \cdot \mathrm{dr}-\mathrm{dF} \cdot \delta \underline{\mathrm{r}}) \tag{9}
\end{equation*}
$$

Now

$$
\delta \underset{F}{F}=\frac{\partial \underline{F}}{\partial x} \delta x+\frac{\partial \underline{F}}{\partial y} \delta y+\frac{\partial \underline{F}}{\partial z} \delta z=(\delta \underline{r} \cdot \underline{\nabla}) \underline{F} .
$$

Similarly

$$
\mathrm{d} \underline{F}=\frac{\partial \mathrm{F}}{\partial \mathrm{x}} \mathrm{~d} x+\ldots \ldots=(\mathrm{d} \underline{r} \cdot \underline{\nabla}) \underline{F}
$$

We have, therefore, from (9)

$$
\begin{equation*}
\delta \mathbf{I}_{\mathbf{i}}=\int_{\mathbf{C}_{\mathbf{i}}}\left[\left(\delta_{-}^{r} \cdot \underline{\nabla}\right) \underline{F} \cdot \mathrm{dr}-(\mathrm{dr} \cdot \underline{\nabla}) \cdot \delta_{-}^{\mathrm{r}}\right] \tag{10}
\end{equation*}
$$

Consider the expression

$$
(\delta \underline{r} \times \mathrm{d} \underline{\mathrm{r}}) \cdot \underline{\nabla} \times \mathrm{F}
$$

and imagine $\underline{\nabla}$ to behave like a vector. Applying the vector identity

$$
(\underline{\mathbf{A}} \times \underline{\mathrm{B}}) \cdot(\underline{\mathrm{C}} \times \underline{\mathrm{D}})=(\underline{\mathrm{A}} \cdot \underline{\mathrm{C}})(\underline{\mathrm{D}} \cdot \underline{\mathbf{B}})-(\underline{\mathrm{B}} \cdot \underline{\mathbf{C}})(\underline{\mathrm{D}} \cdot \underline{\mathrm{~A}})
$$

to this expression we obtain

$$
\begin{equation*}
\left(\delta_{-}^{\mathrm{r}} \times \mathrm{dr}\right) \cdot \underline{\nabla} \times \underline{\mathrm{F}}=\left(\delta_{-}^{\mathrm{r}} \cdot \underline{\nabla}\right) \underline{\mathrm{F}} \cdot \mathrm{~d} \underline{\mathrm{r}}-(\mathrm{dr} \cdot \nabla) \underline{\mathrm{F}} \cdot \delta_{-}^{\mathrm{r}} \tag{11}
\end{equation*}
$$

From Eqs. (10) and (11) we have

$$
\begin{equation*}
\delta \mathrm{I}_{\mathrm{i}}=\int_{\mathrm{C}_{\mathrm{i}}}(\underline{\mathrm{~V}} \times \underline{\mathrm{F}}) \cdot(\delta \mathrm{r} \times \mathrm{dr}) \tag{12}
\end{equation*}
$$

From Eq. (4) we, then, get

$$
\begin{aligned}
& \oint \underline{F} \cdot d \underline{r}=\underset{n \rightarrow \infty}{ } \sum_{i=1}^{n} \delta I_{i} \\
& \left.=\underset{\mathrm{L} \rightarrow \infty}{ } \sum_{\mathrm{i}=1}^{\mathrm{n}} \quad \int_{\mathrm{C}}^{(\nabla} \times \underline{F}\right) \cdot(\delta \underline{r} \times \mathrm{dr}) . \\
& \text { Therefore }
\end{aligned}
$$

$$
\begin{equation*}
\oint \underline{\mathrm{F}} \cdot \mathrm{~d} \underline{r}=\iint \underline{\nabla} \times \underline{\mathbf{F}} \cdot \mathrm{d} \underline{\mathbf{S}}, \tag{13}
\end{equation*}
$$

which is the Stokes' theorem.
The method described above can also be generalised. Suppose the symbol * stands for dot, cross or simple multiplication. Then, as in eq. (3), we could define

$$
\mathrm{I}_{\mathbf{i}}=\int_{\mathrm{C}_{\mathbf{i}} \mathrm{P}} \mathrm{dr} * \mathbf{F}
$$

where \underline{r} and $\underset{F}{ }$ would be scalars, \underline{r} and \underline{F} in case of a simple multiplication. The procedure adopted in the above method will still be valid up to Eq. (10), the integrand whereof will now read as

$$
\begin{equation*}
\left[(\delta \underline{r} \cdot \underline{\nabla}) \mathrm{dr}_{-}-(\mathrm{d} \underline{r}, \underline{\nabla}) \delta_{-}^{\mathrm{r}}\right] * \underset{\mathrm{~F}}{ } \tag{14}
\end{equation*}
$$

Using the vector identity

$$
(\underline{\mathbf{A}} \times \underline{\mathbf{B}}) \times \underline{\mathbf{C}}=(\underline{\mathbf{A}} \cdot \underline{\mathbf{C}}) \underline{\mathbf{B}}-(\underline{\mathbf{B}} \cdot \underline{\mathbf{C}}) \underline{\mathbf{A}},
$$

from (14).we get
$\int[(\delta \underline{r} \times \mathrm{dr}) \times \underline{\nabla}] * \underline{F}=\iint(\mathrm{d} \underline{\mathbf{S}} \times \underline{\nabla}) * \underline{\mathbf{F}} .(15)$
Therefore, we would have the generalised Stokes' theorem

$$
\begin{equation*}
\oint \mathrm{d}_{-} * \underline{F}=\iint(\mathrm{d} \underline{\mathbf{S}} \times \nabla) * \underline{F} \tag{16}
\end{equation*}
$$

Acknowledgement. The author has benefitted a great deal from the unpublished work of Dr. A. Maji Mian, Professor Emeritus, Mathematics and ex-Dean of Sciences, University of Peshawar.

References

1. C. E. Weatherburn, Advanced Vec $r \boldsymbol{r}$ Analysis (George Bell, London, 1944).
2. H. Lass, Vector and Tensor Analysis (McGraw Hill, New York, 1950).
3. O. D. Kellog, Foundations of Potential Theory (Murray, London, 1929).
