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Abstract. The energy terms arising in the floating spherical guassian orbital
(FSGO) model calculation of BeH2 molecule have been analysed asa function
of the bond angle using symmetric orthogonalized orbitals. This helps exclude
three - and four orbital electron repulsion terms making the results interpretable in
terms of some well known electron pair repulsion models.

The energy terms arising in the floating spherical
gaussian orbital lFSGO) model calculation used
for water molecule have, been previously analysed
as a function of the bound angle.! Since the FSGO
model predicts energies and geometries of mole-
cules using localized, closed shell, singlet ground
state configurations, its results are interpretable
in terms of 'Lewis electron pair' model. There-
fore, the piecemeal energy contributions to the
total energy were split up as electronic repulsion
(VEE) , nuclear attraction (VEN) , nuclear re-
pulsion (VNN) and kinetic energy (TE) terms.
Of these terms the electronic repulsion (VEE)
contains interactions such as the inner shell(s)--
bonding pair (bp), inner shell-lone pair (lp), bond-

,ing pair-bonding pair, bonding pair-lone pair
and lone', pair-lone pair for 2-orbital terms and
inner shell. bonding pair and lone pair for I-orbital
terms. By using symmetrically orthogonalized
orbitals the three and four centre electronic terms
are made to vanish. Thus the results obtained by
using orthogonal localized orbitals have been com-
pared with simplified semi-quantitative models
such as the tangent sphere- and the valence shell
electron pair repulsion (VSEPR)3 models.

In water the geometry of the molecule is com-
monly explained by bringing into play the elec-
tronic interactions between pairs of electrons.
Since inner shell electrons here do not contribute
much, bonding and lone pairs essentially deter-
mine the geometry. It was considered worthwhile,
on the basis of the above argument, to look into a
simple molecule in which only bonding pairs are
present so that the lone pairs effects may be 'sorted
out'. With this in mind, the 'FSGO' model'
has been used here to compute various electronic
and nuclear interactions for the BeH2 molecule
using orthogonal localized orbitals.

Each localized spherical gaussian orbitaf func-
tion is represented mathematically by the ex-
pression:

$i Irl= (7t P~2 )3/4 exp [- (r!pY J (I)

which contains variable 'orbital radius' Pi The or-
bitals r~presented in equation (1) are ,;nonortho-

gonal and hence require a complex energy ex-
pression because they involve three and four or-
bital interactions. For orthogonal orbitals Xi,
only two orbital interactions count and the energy
expression has been given by Lowdin.s

E 1= 2~. [i/i] + ~.. {2 [iijjj] - [ijjji]} (2)e I 1,J

Summations are from 1 'to n unless otherwise in-
dicated;

•[iji]=f\ hXi dv (3)

are' one electron integrals involving the one elec-
tron. Hamiltonian operator:

N z ;
h = - t V2 - ~ - (4)

y ry

Here Zy is the atomic number of nucleus s and r v

the distance of the electron from that nucleus.
N is the number of nucleii;

[ij/kl]--:!XP) XP) Xk(2) xp)(l/r12)dv1d"2(5)
are the two electron repulsion integrals. Equation
(2) is obtained from:

•Eel = f'Y H'YdT1•·• •. dT2n

with the total Hamiltonian
2n

H = ~ h
i=l

" -1+ •. y ... . lJ
J<J

(6)

and
'Y - 1/ ~ (2n) ! det (X1XtX2X.; •••. x~~)

Transformation from Nonorthogonal to Symmetric
Orthogonalized Orbitals. The transformation
from the nonorthogonal orbitals cDj to symme-
trically orthogonalized orbitals Xi is achieved .
through a nonunitary transformation which con-
verts the overlap matrix to the unit matrix. Such
transformation has been shown by Lowdin4 for
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determinantal wave function of 2n orbitals all
with paralled spins. The transformation, for a
closed shell case, from the nonorthogonal orbitals
~i to an orthogonal set Xi may be carried out by
the following formula given in matrix notation :

X = ~TI (7)
where T = S-l is the inverse overlap matrix 'and
X and eI> are row vectors of the corresponding
orbitals. Both Sand T are assumed to be real.
The integrals in equation (3) may then be trans-
formed to give:

l: [ili] = l: ~ s (jfk) (Tt) .. (Ti)'k = E (jfk) T'k. . . k IJ 1 . k J
1 1 J J,-

(8)

where

•(j,'k) = I eI>j h eI>kdv

In the same way
~ [iifjj] = ~ (klfpq) T T (9)
i.j k.l.p.q kl pq

and
~. [ljfji] - ~ ( klfpq ) T kq Tip (0)
1,] k.l.p.q

where

* * -I(kl/pq) = leI> (1) eI>(1) eI>(2) eI>(2) r12 dVt dV2 (11)
kip q

(Parentheses refer to integrals' over non-ortho-
gonal orbitals while the brackets involve ortho-
gonal orbitals).
The electronic energy becomes:
Eel = 2 ~j ,k( jjk) Tjk + ~ (kl/pq)

k.l.p.q
[2 Tkl T q, p

The total energy is then given by
N Z Z

. ~ v
E = Eel + l:

tt<v rfloV
After adding the internuclear repulsion energy.

(12)

Orbital Coefficients and geometries for Symme-
trically Orthogona/ized Orbitals. In the ground
state the BeH2 molecule shows linear geometry
with the minimum energy of -]3.214 a.u. when
the H Be H angle is exactly !Slo. The present
and previous calculatiorus using FSGO agree
that the Be-H bond length is 2.669 e.u with inner
shell and bounding pair radii being 0.510 a.u. and
2.108 a.u. respectively, Fig. 1.

Coefficients for symmetrically orthogonalized
orbitals are shown in Table I. Thr, coefficient
have been evaluated for BeH2 geometries when
the H Be H angle is varied from 1800 to 13<r with
successive intervals of 10° betweeneach geometry.
The data on coefficients for inner shell(s) and bond-
ing pair (bp) orbitals indicate that the negative
contribution from the other orbitals to. the inner
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1 bohr
Fig. 1. Orbitals and coordinates (or the BeHz molecule.

shell and bonding pair orbital is rather small.
In mostcases, itis not more than 5 % and remains
more or less the same with changing geometries .

For computer calculations, approximate co-
ordinates, orbital radii and orbital exponents
were fed into the computer and the energy was
allowed to minimize with respect to these. The
calculations are, therefore, almost ab intio with
no semi-empirical parameters involved. The
calculations were then repeated at various angles
being fixed.

Discussion

In Table 2 are listed electron repulsion (VEE) ,
nuclear attraction (VEN), nuclear repulsion (VNN),
kinetic energy (TE) and total energy terms for all
the electrons and nuclei involved in Be H2 mole-
cular energy and geometry computation. The
inner shell(s) seems to be inactive; more signi-
ficant changes occur in 2-orbital bp-bp inter-
actions, bp-nuclear interactions and to a lesser
extent in the kinetic energy terms for all electron
pairs. Nuclear-Nuclear repulsion energy also
changes significantly, in line with the previous ob-
servation regarding H20 molecule. The changes
in different energy terms as a function
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Fig. 2. Plot showing ,0;E as a function of angle variation
for various energy factors.
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TABLEI. COEFFICIENTSFOR SYMMETRICALLYORTHOGONALIZIDORBITALS.

Orbital/ angle 1800 1100 1600 1500 1400 l30°
------

a)
S 1.00994 1.00992 1.00987 1.00979 I.CO)68 1.00952

-0.05552 -0.05545 -0.05521 -0.05480 -1).05421 --0.05341
-0.05552 -0.05545 -0.05521 -0.05480 --0.05421 -0.05341

bp -0.05552 -0.05545 --0.05521 -0.05480 -0.05421 -0.05341
1.01146 1.01166 1.01231 1.01351 1.01543 1.01858

-0.06412 -0.06521 -0.06854 -0.07435 -0.08302 -0.09511
bp -0.05552 -0.05545 -0.05521 -0.05480 --0.05421 -0.05431

--0.06412 -0.06521 -0.06854 -0.07435 :-0.08302 -0.09511
1.01146 1.01166 1.01231 1.01351 1.01548 1.01858

(a) In each section the successive coefficients are for the original inner shell and bonding pair gaussians, respectively.

TABLE2. VARIOUSENERGYCOMPONENTSFORTHE BEH2 MOLECULE
(ENERGYIN ATOMICUNITS.HARTREE).

Energy /angle 1800 1700 1600 1500 1400 130°
Electron repulsion

(2-0rb.)
S - bp 3.4484 3.4478 3.4460 3.4428 3.4380 3.4374
bp - bp 0.9146 0.9176 0.9267 0.9418 0.9631 0.9844

(I - Orb)
S 2.2096 2.2096 2.2096 2.2095 2.2095 2.2094

bp 1.0780 1.0781 1.0785 1.0709 1.0799 1.0811
VEE 7.6506 7.6531 7.6608 7.6731 7.6905 7.7123

Nuclear attraction
S -26.5776 -26.5774 -26.5770 -26.5764 -26.5754 -26.5741
bp --10.6815 -10.6837 -10.6905 -10.7020 -10.7183 -10.7398

VEN -37.2591 -37.2611 -31.2675 -37.2784 -37.2937 --37.3139
Nuclear repulsion

VNN . 3.1847 3.1854 3.1876 3.1913 3.1967 3.2041
Kinetic energy

S 11.7556 11.1553 11.7542 II. 7524 11.1491 11.7462
bp 1.4539 1.4545 1.4564 1.4597 1.4648 1.4125
TE 13.2095 13.2198 13.2106 13.2121 l3.2145 13.2181

Total -13.2143 -13.2128 --13.2085 -13.2019 -13.1920 13.178"8

of the bond angle listed in Table 2 are by no
means dramatic, yet they contain the relevant in-
formation if looked into a little more carefully.
For this purpose, differences in energies (~ Energy)
between two consecutive points is plotted in
Fig. 2, taking energies for the linear configura-
tion (180°) to be at point zero. Fig. 2 shows that
the nuclear attraction terms become more minus
with the bond distortion from linear to a bent
configuration while all other terms (VEE, VNN,
TE and total energy) increase. This perhaps may
best be explained by assuming that a bent structure
for the BeH2 molecule brings into play more mar-
kedly the nuclear - electron attraction interac-
tions which are absent when the nuclei and elec-
trons are far apart. Also, the same factor which
is responsible for a favourable (low energy) VEN

term makes VNN and VEE more repulsive since
now the nuclear-nuclear and electron - electron
interactions become more dominant. It is seen that
there is an increase in kinetic energy going from
linear to the bent configuration. The role of kinetic
energy, however, is relatively more difficult to
explain.

At equilibrium distances for any molecule.
the energy analysis to make sense, Virial jheorem
should be obeyed. Virial theorem states that E =
-f = V/2. Here V is the average potential energy
and T the average kinetic energy. It is observed
that at equilibrium and in its vicinity (H Be H angles
being 1800 and 110°), E values are -13.2143 and
-13.2128 respectively while their corresponding
kinetic energy values are 13.209 and B.2198 res-
pectively. For BeH2, the agreement with the
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'Vi~ial theorem is therefore just fair near equili-
brium. However, for H Be H angles being f40°'
and 130°, the agreement with the Virial theorem
is not good, which is understable since the mole-
cule is far from equilibrium. It is due to this fac-
tor that the interpretation of the analysis of energy
terms as 3 function of the bond angle for BeH2
molecule becomes somewhat obscure and should
therefore be handled with care.

At first sight, the overall picture of Befh
molecule developed here resembles closely the
electrostatic models of Bents and Gillespie."
The detailed ,energy analysis, however as shown
in Fig. 2 and Table 2 reveals that this indeed is
not the case. Electro-static models such as men-

ti oned above and others89 explain molecular
geometries in terms of interactions between electron
pairs (all bonding and lone pairs) which turns out
to be too simple to be true. The apparent fallacy
of such models lies in neglecting nuclear-nuclear,
nuclear-electronic and kinetic energy effects, which
in many molecules may play the' domineering part.
An alternate approach to molecular geometry .has
been used by Pauling,lO Strong and others.U In
this approach radius ratios and size effects are
assumed to give guidelines to final answers.
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