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Abstract. The decay of the kinetic and magnetic energies in magnetohydrodynamics is
analysed. It is observed that in the case of nonconducting walls and finite conductivity of the
fluid the energy of the system decays faster than exponential.

The decay of the kinetic and magnetic energies in
a magnetohydrodynamic flow has attracted consider-
able interests due to its astrophysical application.
Weiss! obtained numerical results which illustrate
the time-dependent behaviour of an initially uniform
magnetic field in a highly conducting fluid in eddy
motion. Cowling2 has shown that it is impossible
for certain class of fluid motion to prolong the decay
times indefinitely. Jadys studied the normal mode
of decay of a magnetic field in a nonuniformly rotat-
ing conducting fluid.

The present work deals with the decay of the kine-
tic and magnetic energies of an incompressible elec-
trically conducting fluid in a fixed bounded noncon-
ducing region. The method employed in the present
analysis follows that of Serrin," Rao,s Shahinpoor
and Ahmadi, 6,7 It is observed that for the present
case the rate of the decay is faster than exponential
if the magnetic Reynolds number is finite.

Basic Equations. The equations governing the mo-
tion of an incompressible, electrically conducting flu-
id in dimensionless form read:

~~ +v : \I v = -\1 (P+ t RH H2) +

1 2 (1)
R. \1 v+ RH H . \1H

(2)

\1 . v =0 , \1 ~H=O (3)
where v is the velocity vector, H is the magnetic field
strength vector, and P is the hydrostatic pressure.
The dimensionless groups are:

pV'L-Rc =-- = Reynolds number
!Lm

pVoLo
=--=p'm

M2 .1.
RH =R-- ,M = p.mHo Lo (cr/p.) 2 =.Rm

Hartmann number (6)
p., p'm, p and a are viscosity, magnetic viscosity,
fluid density and conductivity, respectively. L; and
Vo are the maximum length and velocity in the
domain.

Magnetic Reynolds number

Analysis. Consider the flow of an incompressible
electrically conducting fluid in a domain V bounded
by the regular nonconducting surface S on which the
velocity vanishes. That imposes the following
boundary conditions:

v =0 on S

H =0 on S
for the case of zero external magnetic field.

Furthermore let us assume that both velocity vector
v and the magnetic field-intensity H possess continu-
ous second order derivative in v. The total energy
of the system is

T=Tl+T2

where Tl is the kinetic energy of the fluid,
Tl=-H v2+

and T 2 denotes the energy of the magnetic field,

RHI 2T2 ="2 H .

Taking total time derivative from (9) Wefind

(7)
(8)

(9)

(10)

(11)

o

dT =dTl+dT2=J[V:a~+ R H' aH]
dt dt dt at H at (12)

Employing equations (1)-(3) in (12) and making use
of the standard vector identity

\1 . (A xB)=B' V X A-A . \lxB (13)

(4)

we find

dT SIr 2 Idtl=- v' \7v' v-R• J (V xv) +RH H'\1H'v

- ~.f s (\1X v)x v-ds (14)

(5) ;~2=RH[J H . \Iv' H- J v !\1H-~m J(v X H)2

-~ S s (\7 X H) X H . ds ] . (15)

Employing the boundary conditions (7) and (8)
together with equations (3) in the above yields.

The conventional volume infinitesimal is omitted constan-
tly in the integrals which are extended over the volume V.
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dT=_..!... J('V x V)2 _ RHf('V x Hl
dt s, s; (16)

According to Serrin 4 if,,· .4=0 in v and A =0
on S then

J (V xA)2 ~ 80 J A2

decay is similar to that of'a nonconducting viscous
fluid but for Rm> R, the rate of decay is slower than
that of a corresponding simple viscous fluid. For the
limit of very large magnetic Reynolds number, i.e.
infinite conductivity, the rate of decay becomes much
smaller and it would not be exponential.
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Equation (16) then becomes

dT ~ _ 80 fU2 _ 80 RHJH2
dt s; s;

Now from (18) it is found that

T (t) ~ T (0) e -at

1.

2.
(19) 3.

3.
(20)

4.
5.
6.

(21)

N. 0, Weiss, Proc. Roy. Soc. (London), 293,
310 (1966)
T. G. Cowling, Quart J. Mech. Appl. Math.,
10, 129 (1957)
R. J. Jady, Quart J. Mech, Appl. Math., 22, 66
(1957)
R. J. Jady, Quart J. Mech. Appl. Math., 22,
65 (1969).
J. Serrin, Arch. Ratn. Mech. Anal., 31. 1. (1959).
L. S. K. Rao, Quart. Appl. Math., 27, 2 (1969)
M. Shahinpoor and G. Ahamadi, Meccanica
deifluidied Idraulica, Istituto Lombardo (Rend
Sc.,) A107, 363. (1973)

7. M. Shahinpoor and G. Ahamdi, Intern. J. Eng,
Sci., 11, 885 (1973).

dT
dt ~ -aT

where
. . {80 80}

a = mmnnum Re' Rm

It is then clear that

In other words the rate of decay is at least exponen-
tial. It is observed that for Rm < R, the rate of
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