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Abstract. The dispersion of a solute in magnetohydrodynamic channel and Couette
flows are considered. The effective Taylor diffusivities of the solute are calculated. It is ob-
served that in both cases the effective diffusivity is a decreasing function of the Hartmann
number.

TaylorI-3 in a series of papers discussed the
dispersion of soluble matter in the viscous, incom-
pressible laminar flow of a fluid in a circular pipe.
The case of the dispersion of a solute in non-Newton-
ian fluid flow in a circular pipe was discused by Fan
and Hwang+ Soundalgekar i considered the effect
of couple stresses on the dispersion of a solute in a
channel flow. Recently Ahmadi» studied the disper-
sion of a solute in a micropolar pipe flow. Dispersion
of solute in MHD flows have been considered by
Gupta and Chatterjee and more recently by Soundal-
gekar.7,8

In the present work the dispersion of solute matter
in magnetohydrodynamic channel and Couette flows
with vanishing electric field (that is short circuit) are
considered. The effective Taylor diffusivities of the
solute are calculated. It is observed that the effective
diffusivities are decreasing functions of the Hartmann
number. The asymptotic forms of the Taylor diffus-
ivities for small and large Hartmann numbers are also
obtained and discussed.

Basic Equation. The concentration c of the solute
diffusing in a fluid flowing in a channel satisfies the
following equation:

where D is the molecular diffusion coefficient, u is the
velocity distribution, x, yare the space coordinates
in the direction of the flow and normal to it, respect-
ively, and t is the time. We assume that the channel
is wide enough so that the dependence on the third
space coordinate can be ignored.

Following Taylor--o we assume that the diffusion
in the flow direction is much smaller than the radial
diffusion, i.e.
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Employing now the following dimensionless quantities.

x-lit tL
L ,TJ=y/h, e=T (3)

The diffusion equation (1) in a frame moving with the
average velocity 11 becomes

li Oc + W Oc _ D 02C
T ae T a'f- h2 0~2

(4),

where w = u-li, h (5) is the half width of the channel
and L is a given length along the flow direction.

If we assume that the Taylor limiting condition to-
be valid, then the partial equilibrium may be assumed
in any cross-section of the channel and hence Oc/Oa is
negligible. Therefore, c satisfies the following equa-
tion:

(6)

(1) For given w( TJ) the effective Taylor diffusivity may be
calculated by the method which we will outline in the
specific cases.

Magnetohydrodynamic Channel Flow. The ex-
pression for the velocity in a fully developed flow of a
viscous, incompressible, electrically conducting fluid
between two parallel walls and under a constant
transverse magnetic field and in the absence of electric
field as given by Pai.? Cambelt? and Sutton and
Sherman II is

U

Uo
cosh M-cosh eM TJ)

cosh M-l
(7}

(2)
where Llc is the maximum velocity

h2 OP cosh M-l
Uc = - ~ ax M2 cosh M
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'I) = ylh = dimensionless transverse coordinate;

M = Hartmann number

(Jp/(Jx is the pressure drop and [.t is the viscosity of 0.8
'fluid. The average velocity il is

o M cosh M -sinh M
M (cosh M-l)Uo

It must be pointed out that the velocity distribution (7)
-is for the short circuit condition and is quite different
from the ones employed in (7) and (8).
The relative velocity then becomes

w u-il sinhM -Mcosh(M 1)

Uo--u-o-- M (cosh M-1)

Substituting for w from (9) into (5) and integrating
twice under the assumption of constant (Jc/(J~,we find

_ '?:.'!!?_ y?'M sinh M -2 cosh (M 1) • (Jc +co (10)
C -2DL M2 (cosh M -1) (J~

where we have used the boundary conditions

(JC I = 0
a;l "I)=±1

and Co is a constant which can be determined from the
entry condition.

Now the volume rate of the transport of the solute
across a section of the channel is given by

Q = ~': C w dy = h ~ ~ I c » d1)

=h3uo2 [2M2+3M sinh 2M -(8+!M2)sinh2MJ(Jc -(12)
2DL M4 (cosh M -1)2 (J~

On comparing (12) with Fick's law of diffusion

Q= - 2hD* ~~

we find that the solute is dispersed relative to a plane
moving with the mean speed of the flow with an effect-
ive Taylor diffusion coefficient D* given by

D* = h2U20F (M) (14)
D

where
_ (8+tM2) sinh2M -2M2-3M sinh2~(15)

F (M) - 4M4 (cosh M _ 1)2

Figure 1 shows the variation of F with Hartmann
number.
For small Hartman number the above becomes

F(M) = (9/945) [1-M/30 + ...J (16)
which reduces to that of a simple viscous fluid for
M = O. For large M, the expression (15) takes the
following asymtotic form.

Fa(M) = Cl/3M2) (1-9/2M + 121M2 + ...) (17)
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Fig.!. The variation of the functions F (M) and G(M) and
their asymptotic forms with Hartmann number M.

(11)

From Fig. 1 and equations (14 -17) we conclude that
for fixed Uo the effective diffusivity D* decreases with
an increase in the Hartmann number and the rate of
decay is proportional to I/M2 for very large Hartmann
number. From Fig. 1 it is also observed that for M
greater than 11,Fa becomes almost identical to F.

Magnetohydrodynamic Couette Flow. The expres-
sion for a viscous, incompressible, electrically conduct-
ing fluid in a Couette flow under a constant transverse
magnetic field with zero electric field (that is short
circuit conditions) is given by 9-12

u sinh M"I)
-=-----

v sinhM (18)

where "I)= ± 1 are the boundaries of the flow and v is
the velocity of boundary plates. The average velocity
is of course zero and hence

W=u=v
sinh M·~
sinh M (19)

(13)
Employing the above in (6) and integration twice and
making use of the boundary conditions (11) we find

h2 ~ sinh M"I) - "l)M cosh M (Jc + (20)
c = DL M2 sin M (J~ Co

The volume rate of transport of the solute across a
section of the channel is then given by

Q= _h2
v
2 3 sinh2M-2Mcosh2M-4M (Jc(21)

2DL M3 sinh2M (J;
On comparing the above with (13) we find

h2v2

D* =---yr G(M) (22)

where
2(M) cosh 2M + 4M- 3 sinh 2M (23)

G(M) = 4M3 sinh2M

The expression (22) is the effective Taylor diffusivity
for MHD Couette flow. Figure I shows the variation
of G with Hartmann number.

For small values of M we find
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2 M2
G(M)= 15(1-7 + ... )
M~O

For M = 0, G(M) = 2/15 which is the special case of a
simple viscous fluid.

For large values of M the asymptotic form of G(M)
becomes

(24)

1 3
Ga (M) = M2 (1- 2M + ...)
M~OO

The asymptotic value G« is also being plotted in Fig. 1.
It is observed that for M greater than 3 the magnitude
of G« is identical to that of G. From equation (25)
we conclude that the effective diffusivity decays to
zero as 11M2 for large M.

Conclusions

The result of ref.7 and 8 is extended to the case of
short circuit MHD channel and Couette flows. The
effective Taylor diffusivity in both cases are found to
be a strong function of the Hartmann number. For
zero Hartmann number it approaches to that of a non-
magnetic viscous fluid which is a positive constant.
For an increase in Hartmann number the -effective
diffusivity decrease and for large Hartmann number
flows it approaches zero as M_2.
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