SPECTROSCOPY OF IODONIUM COMPOUNDS

Part II. Xylyl Iodonium Compounds and their Spectra

M. ARSHAD A. BEG and Y.Z. ABBASI

PCSIR Laboratories, Karachi 39

(Received June 1, 1974; revised January 1, 1974)

Abstract. o, m and p-xylyl iodonium compounds have been prepared and their IR spectra are recorded for the 1600–250 cm^I region. The spectra of these 1,2,4-trisubstituted benzene derivatives are interpreted in terms of the variation in intensity with respect to the substituent positions in the corresponding xylyl halides where there are marked changes for the various vibrations. The UV spectra of the compounds have also been presented. IR and UV spectra both suggest that the iodonium cation in the p-xylyl compounds interacts with the π -electrons of the ring more than in the ortho and meta-xylyl compounds.

The preparation and spectra of a series of iodonium compounds has been reported in the past.¹⁻³ We have also reported the IR and UV spectra of multivalent iodine compounds of benzene and toluene.³ Our interest has been centred on the intensity of some X-sensitive vibrations and also some of the skeletal vibrations occurring in the 1300–1600 cm⁻¹ region. These studies have so far been limited to mono or disubstituted ring systems. In this paper we wish to report the systems where the aryl group is o, m, or p-xylyl. The preparation of the o-xylyl compounds has not been reported previously although they can be obtained by the conventional methods.

Experimental

The xylyl iodonium compounds have been prepared by the treatment of the corresponding xylene with potassium iodate in the acetic acid-acetic anhydride-sulphuric acid system. Iodonium iodide was obtained by adding potassium iodide and the bromide by adding sodium bromide to the resulting mixture. The chlorides could not be obtained in good yield and are not being reported here. The IR spectra were recorded in KBr pellets and by taking weighed amounts of the compound and KBr and recording the spectra so that the maxima remained in the 40-70% absorption range. The integrated intensity data were calculated as described earlier.⁴ The IR spectra were recorded on a Beckman IR-10 spectrophotometer at the University of Western Ontario, London, Canada, under the CIDA-NRC research associateship programme. UV spectra were recorded in methanol on a SP-700 spectrophotometer.

Results

It would be observed from the spectra that no matter which xylene is taken as the starting material, the substitution occurs in such a way that the ring is 1,2,4-substituted. Thus the *ortho*, *meta- and para*xylenes yield a 1,2,4-substituted iodonium compound. It is noted that the position of the bands is not as much sensitive to substitution as is the intensity. In each case a difference occurs with respect to the intensity of the band at least in the 800-650 cm⁻¹ region.

IR Spectra of the Iodo Compounds. The ring system under discussion is for 1,2,4-trisubstituted benzene derivative. For such derivatives Green, Harrison and Kynaston⁵ have given the assignment for the fundamental bands according to which the interpretation of the spectra is quite simple. Assignments for such trisubstituted ring systems are not available except for this reference.⁵ Tables 1–5 furnish the assignments for iodoxylenes like 4-iodo-m-xylene a (2) iodo-pxylene (b) and 4-iodo-o-xylene (c) and also their iodonium compounds. It might be found from the Tables that among the simple iodides and also their iodonium compounds there is a slight variation in the position of the bands. Thus the v_4 mode occurs at 1605 cm⁻¹ in the spectrum of (a) and (b) but at 1590 cm⁻¹ in (c). The intensity varies in the respective order noted above. The v₅ band is not noted in compound (a) and the intensity in (b) and (c) is of the same order. The v₆ band has a very high intensity in compound (c). This band happens to be the *n* mode which has been found in our earlier studies to absorb intensely, in cases where the neighbouring group effect is operative and is quite predominant in the o-tolylphosphonium compounds.⁶ The intensity of this mode is not as high in the other compounds as in compound c. Similarly δ_{as} CH₃ vibration has also a high intensity in compound c while in the others the intensity is average. The m mode or v_7 absorption occurring at a lower frequency 1376 cm⁻¹ than in the tolyl compounds does not have a high intensity again and similar is the case with the o mode or v₈ absorption.

The pattern of absorption in the $1600-1300 \text{ cm}^{-1}$ region is such that v_4 and v_5 modes have an average intensity while v_6 is quite high, followed by the δ_{as} CH₃ absorption. v_7 is rather different in each case and v_8 is weak having almost similar absorption intensity. It has been pointed out earlier that for the phosphonium compounds *m* mode absorbs at a slightly higher wave number compared with the arsonium analogues.⁴ The change in position and in intensity has been related to the deactivation of the ring at the *meta* position and in the present case it may be extended to this position with respect to

iodine.⁴ The higher inductive effect of the methyl group placed in the *ortho* position in compound c is sufficient to cause a similar deactivation of the ring which is further deactivated by the induced polarization of the iodine atom. Since the frequency shifts to higher position if the inductive effect is higher, the observed changes are substantiated. It may, however, be mentioned that the intensity changes and the positions are almost the same in compounds (b) and (c) and hence the variation in the *ortho*-xylyl compound must be attributed to steric factors which has been discussed earlier ⁴³⁶ in terms of the neighbouring

group effect. The o mode is also found to change its position in the three iodo compounds, which suggests that this is also sensitive to the position of the substituent, since the overall electronegativity of the compounds is the same. The position changes gradually from (a) to (c), where it is the highest. However, the shifts in this position could be due to changes in the positive inductive effect due to changes in the position of the substituents. Consequently this band may be assigned to the X-sensitive mode v_8 , an assignment justified by the higher intensity of the absorption in compound (c).

TABLE 1. CHARACTERIZATION OF THE XYLYL IODONIUM COMPOUNDS.

Company	Ma	C	2(%)	H(%)		
Compounds	м.р.	Calcd	Found	Calcd	Found	
(o-Xylyl) ₂ I+I ⁻	134	41.3	41.5	3.88	3.81	
$(p-Xy y)_2I+I^-$	133	41.3	41.04	3.88	3.91	
(o-Xylyl) ₂ I+Br-	165	45.93	45.27	4.35	4.21	
$(m-Xylyl)_2I+Br-2H_2O$	168	42.29	42.58	4.84	4.18	
(p-Xylyl) ₂ I+Br ⁻	151	45.93	45.99	4.3	4.23	

	СН3 + СН3 †		сн3-	СН3 + - сн3 вг)- ı -{	Снз-	13	CH3 CH	
	-I-(g)	(o-Xylyl)2I+		r-(f)	-Xylyl)I+B	(o	4-Iodo- <i>o</i> -xylene (c)		
Assign- ment	Integrated intensities (I)	Solution	Solid	Integrated intensities (I)	Solution	Solid	Integrated intensities (I)	Solution	Liquid
ν4	1130	1587	1590	962	1590	1588	525	1590	1605
٧S	the second second		1.100	233	1560	1 100	480	1515	1558
V6	323	1466	1480	497	1475	1480	3120	1477	1471
SCH3	1506	1443	1450	1245	1443		2900	1433	1433
SCH3	2420	1414	1200	1506	1412	1000	500		1071
٧7	1076	1377	1390	956	1383	1388	589	1379	1374
v8		1071	1295	105	10.00	1290	98	1280	1277
<u>و</u> ۷	592	1271	1285	405	1269	1280			1269
VIO			1230		11.00	1225			1230
VII	753	1176	1145	832	1166	1142	326	1136	1133
٧12	631		1125	502	1114	1005	218	1120	1116
٧13			1025			1025	68	1020	1017
CH ₃ rock	4173	993	1000	292	989	998	526	990	987
٧14			885			872	359	871	849
V23			845			832			
			820			823			
V24			805			805	757		805
VIS			748			746			741
۷16			700			702			693
V25			615			615			
V26			542			545			
			527			528			
ν18			440			440			
V20			270			270			

SPECTROSCOPY OF IODONIUM COMPOUNDS. PART II

TABLE 3. IR SPECTRA AND ASSIGNMENT FOR 4-IODO-m-XYLENE AND m-XYLYL IODONIUM HALIDES.

TABLE 4. IR SPECTRA AND ASSIGNMENT FOR 2-IODO-p-XYLENE AND p-XYLYL IODONIUM HALIDES.

CH3
\bigcirc
СНЗ

СНЗ	
2-Iodo- <i>p</i> -xylene (b)	

 $(p-Xylyl)_2I^+Br^-(d)$

Assign-Integrated Solid Integrated Solid Integrated Liquid ment Solution intensities in Solution intensities in Solution intensities film KBr KBr (I) (I) (I) 1479 14 7 ٧S v6 8CH3

(Continued)

M. A. A. BEG and Y. Z. A	ABBASI	I
--------------------------	--------	---

Table 4 con	ntinued)								
1148 1035	1148 1030	71 488	1155 1045	1147	521	1150 1025	1144	456	VI3
1010	1011	91	980	975	156	980	972	863	CH ₃ rock
978	945	49	890						V22
872	873	268	880			880			¥14
848	846		830	861		840	863		V23
810	809		825			820			V24
733			738			735			VIS
690			695			690			VIG
670			668			665			V25
530			528			522			v26
465	· · ·		450			452			٧17
432			430			432			v18
320			328			325			91٧
310			300			280			V28
265			265	A. S. S.		265			V20

TABLE 5. UV SPECTRA* OF XYLENES AND XYLYL IODONIUM COMPOUNDS.

(a) 4-Iodo- <i>m</i> -xylene	λ _{max} nm ε	280 550	271 738	264 786	261 817	253 833		
(b) 2-Iodo- <i>p</i> -xylene	λ _{max} nm ε	280 811	272 875	265 789	258 747	252 704		
(c) 4-Iodo-o-xylene	λ _{max} nm ε	280 314	271 424	264 471	260 518	254 534		
(d) $(p-Xylyl)_2I+Br-$	$\lambda_{\max} nm$	285 4180					235 15859	219 20408
(e) $(p-Xylyl)_2I+I^-$	$\lambda_{\max} nm$	285 4086					232 22264	223 28182
(f) (o-Xylyl) ₂ I+Br-	$\lambda_{\max} nm$	280 3644	270 5359				242 17147	217 16719
(g) $(o-Xylyl)_2I+I-$	$\lambda_{\max} nm$	280 3321	272 4650				241 20593	221 28564
(h) $(m-Xylyl)_2I+Br-$	$\lambda_{\max} nm$	280 4538	270 6210				241 20063	219 20063
(i) $(m-Xylyl)_2I+I-$	$\lambda_{\max} nm$	280 3875	273 4650				242 17567	221 22992

*Recorded in methanol

The band in the $1130-50 \text{ cm}^{-1}$ region changes position within reasonable limits and is assigned to mode v_{11} . This band has a high intensity in (c) but occurs at a lower frequency at 1136 and is followed by compound (a) at 1142 and in compound (b) at 1148. This again may be attributed to an X-sensitive mode. Mode v_{12} absorbs at the same frequency and has again a high intensity for compound (c). It may be mentioned that this becomes a symmetric C—H inplane bending vibration because of the substituent at position 4 and this could be the reason for its consistency in all the compounds. The X-sensitive mode v_{13} or q mode has been found in iodobenzene7 at

1060 cm⁻¹. In the xylyl compounds (a), (b) and (c) there is no band in this region. However, a band occurs at 1032 in compound (a) at 1030 in compound (b) and at 1020 in compound (c). The intensity changes from (b) to (a) followed by (c), where it is quite low. This is, assig ed to the X-sensitive mode because of its change in pc ition on 'onium compound formation. In each case the methyl rocking frequency is also different. In compounds (a) and (c) there is a singlet in each case, occur is at 1009 and 990 cm⁻¹ respectively with almost similar intensity. In compound (b) there are two we k bands, one at 1011 and the other at 986, the latter having medium intensity but lower than

8

(a) or (c). This again should be attributed to the changes in the position of the methyl group.

The interesting part of the spectrum of these compounds occurs in the $800-875 \text{ cm}^{-1}$ region. There are bands in each case at $871\pm1 \text{ cm}^{-1}$ at $845\pm1 \text{ cm}^{-1}$ [in (a) it occurs at 831] and at 804 cm^{-1} [in (b) it occurs at 809 cm^{-1}]. The intensity of these bands is quite different, (a) has the lowest intensity of the order of 200, while (b) has medium intensity of the order of 700-1000. The 870 band has a lower intensity among these bands but in compound (a) this has a high intensity, while in compound (b) 809 cm^{-1} band has the highest intensity although comparable with the one at 846 and in compound (c) the 847 cm^{-1} band has the highest intensity followed by the one at 804 cm^{-1} .

The bands in the lower region of the spectrum have all been assigned. These bands are quite consistent and occur around the same position except for the X-sensitive mode v_{17} whose position changes appreciably.

p-Xylyl Iodonium Compounds. On formation of the 'onium compounds it is noted that there are slight shifts in band position to a somewhat lower frequency. In p-xylyl iodonium bromide (d) and iodide (e), for example, the v_4 band shifts to 1600 cm⁻¹ in the solid state but in chloroform solution it occurs at 1608 and 1603 cm⁻¹ respectively compared with (b) where this band is noted at 1605 cm⁻¹. The v_5 band is found at 1540 in (d) and at 1550 in (e). The v_6 mode occurs at 1485 cm⁻¹ in each case while the 8CH₃ deformation mode is noted at 1450 in (e) only. It may be mentioned that v6 is again a high intensity band in both the cases. The v_7 band also shifts to a higher frequency and is at 1382 in (d) and 1385 in (e). Shifts to higher frequency for this mode suggest interaction of the cation with the ring π -electrons. The v8 band is noted at lower frequency in each case at 1272 but the 1210 band is shifted to 1220 in (d) and 1217 cm⁻¹ in (e). The v_{II} band noted in the iodo compound at 1146 shifts to 1150 cm⁻¹ in (e) and to 1155 in (d). In the solution spectra the frequency from 1600 to 1150 cm⁻¹ are found to be slightly shifted, particularly mode v_5 , while mode v_{10} is missing. The v_{11} band is, however, noted in the solution spectra at 1144 cm⁻¹ in (e). In the solid state they are noted at 1155 and 1150 cm⁻¹ respectively. The shift to higher frequency is consistent with the assignment of this band to an X-sensitive vibration. Furthermore, the greater shift in the bromide is also in accord with the observation in the phosphonium compounds where it was pointed out that induced polarization by the central atom is responsible for the overall positive character of the cation. When there is a decrease in the overall electronegativity of the positive moiety the shifts are to the higher frequency and vice versa. Thus in the bromide the shifts are to higher frequency compared with the iodide having a lower overall electronegativity.

The 1290 or v_8 band is not observed among these compounds nor in (b) and similar is the case with the v_{12} band. The v_{13} mode which occurs in (b) at 1030 is shifted to 1045 in (d) and to 1025 in (e). Since this is also an X-sensitive mode, the shifts in the two direction may be explained as above on the basis of electronegativety differences. The CH₃ rocking mode is also shifted to 980 in both (d) and (e). The v_{14} band is shifted from 873 in (b) to 880 in (e) and doublet at 880 and 890 in (d). There is a minor difference in the occurence of the v_{23} band but there is a major shift for the v24 band, from 809 to 825 and 820 cm⁻¹ for both (d) and (e) respectively. For modes v_{15} , v_{16} , v_{25} and v_{26} , there are again minor differences and the shifts are usually to lower frequencies indicating that the positive iodonium atom interacts though only weakly with the π -electron density of the benzene ring. This is further supported by the shift of the Xsensitive mode v17 to lower frequency from 465 to 450 in the iodonium compound. For the v_{18} and v_{20} modes also there are only minor differences. The v_{19} and v_{28} bands which were observed in (b) at 320 and 310 cm⁻¹ respectively are noted in the iodonium compounds at 328 and 300 in (d) and at 325 and 280 cm⁻¹ in (e).

o-Xylyl Iodonium Compounds. For the o-xylyl iodonium bromide (f) and iodide (g) the trend is the same as noted in the previous case. In this case mode v_5 is missing in the solid state but it appears in the solution spectrum of the bromide (f) only. The v6 band which occurs at 1477 in (c) is found in almost the same region in the iodonium compound and in (g) it is shifted to 1466 cm⁻¹ in the solution spectrum. The SCH₃ mode occurs in (c) at 1443 cm⁻¹ and is at the same frequency in the liquid spectrum of both (f) and (g) but in the solid spectrum it is shifted to a slightly higher frequency of 1450 cm^{-1} . It is also interesting that the ⁸CH₃ symmetric mode is noted in the solution spectra of both (f) and (g). The v_7 band which occurs in (c) at 1380 is shifted in the solid state spectrum of both (f) and (g) to 1390 cm⁻¹ but is almost the same in the solution. The v_4 band is found to gain in intensity for the iodonium compounds but the v6 mode loses intensity and same is the case with the SCH3 modes. The loss in intensity in these cases seems to be related to the neighbouring group effect. It has been said earlier that the intensity of these two modes is high in the o-xylyl iodide (c) compared with (a) and (b). The loss in intensity on formation of iodonium compounds suggests that there is quite a bit of relief in the neighbouring group effect. The loss in ⁸CH₃ intensity suggests that the methyl groups are so oriented that steric interaction is considerably reduced. The v7 mode, however, has a higher intensity for the iodonium compounds but in solution this frequency is shifted only slightly to higher wave numbers which indicates that the iodonium cation does not interact to the same extent as in the *p*-xylyl compounds. The v_8 mode which is already at a higher position compared with the other iodoxylyl compounds is shifted further for the iodonium compounds. This shift again suggests that this is an Xsensitive mode. The v₉ mode shifts to higher frequencies in the solid state is not observed in the iodo compound but occurs at the same position in the solution spectra of the iodonium halides. Since this is related to a symmetric inplane deformation $\beta(C-H)$ mode, the occurrence of a medium intensity band shows that the arrangement of the two rings in the iodonium compounds is such as to effect coupling of this vibration. The v_{11} band which has a high intensity for (c) gains further in (f) and (g). This has been assigned to an X-sensitive mode and hence a shift to a higher

frequency in the iodonium compounds and particularly in the solution spectra supports the assignment. The v_{12} band gains in intensity among the iodonium compounds. The X-sensitive mode v_{13} is noted at 1025 in (f) and (g) and is shifted by 5 cm⁻¹ compared with (c).

The spectrum for the remaining region is quite similar for the two iodonium compounds (f) and (g). The differences in their position are only slight as compared with the *p*-xylyl compounds. Thus the v_{14} band which occurs in (d) and (e) at 880 cm⁻¹ is found in (f) at 872 but in (g) at 850 cm⁻¹. The v_{15} band noted in the *p*-xylyl compounds at 735 is noted at 745 cm⁻¹ in the *o*-xylyl compounds. The 545 band is a high intensity band and is, therefore, assigned to the ring deformation mode v_{26} . The v_{17} mode does not occur in the *o*-xylyl compound but the v_{18} mode is noted at 440 cm⁻¹. This again is an X-sensitive mode and is shifted to a higher frequency compared with *p*-xylyl iodonium compounds (d) and (e).

m-Xylyl Iodonium Compounds. The spectra of m-xylyl iodonium bromide (h) and iodide (i) are also closely similar to those of the ortho and para compounds, but for differences in the 700 cm⁻¹ region. The v_4 and v_5 modes are resolved in the solution spectra of the iodonium compounds while vs is not observed in the spectrum of the iodo compound (a). The v_6 band which occurs in (a) at 1479 is shifted to a higher frequency in (h) with a loss in intensity and to a slightly lower frequency in the solution spectrum of (i). This shift again suggests that the iodonium cation in this case is weakly interacting with the ring π -electrons which is the same as the o-xylyl compounds. The methyl deformation frequency is also shifted from 1460 in (a) to 1450 in (h) and 1433 in (i). The region for this absorption remains the same in the KBr spectrum.

The v_6 or *n* mode has a very high intensity while v_7 shifts to a lower frequency in both (h) and (i) compared with (a) where it occurs at 1376 again suggesting that the cation is weakly interacting. The v8 frequency is shifted to lower frequency from 1274 to 1264 cm^{-1} in each case, while v_9 does not seem to occur in the iodonium compounds. The v_{10} mode occurs at the same frequency in (a), (h) and (i). The v_{II} which has been assigned to X-sensitive mode in the previous cases is not very distinct in these spectra. The v_{12} mode is also not noted in the iodonium compounds but the v_{13} mode occurs at almost the same frequency. The CH₃ rocking frequency is also shifted to a slightly lower frequency in both (h) and (i). The v_{22} frequency is not observed while the v_{23} occurs in (h) at 916 cm⁻¹ and in (i) at 918 cm⁻¹. The v_{14} is shifted to a higher frequency and is split into a doublet in the case of (h) and triplet in the case of (i). The v_{24} is also shifted to a higher frequency while v_{15} is shifted to a lower frequency from 723 to 714 cm⁻¹ in each case. The vi6 is also shifted from 693 to 685 in the iodonium compounds.

A comparison of the spectra of the iodonium compounds in the 1600–1300 cm⁻¹ region suggests that the neighbouring group effect is not operative in the *o*-xylyl iodonium compounds. The interaction of the iodonium cation with ring π -electrons is weak for the ortho and meta-xylyl compounds but in the p-xylyl compounds the cation interacts to a large extent.

UV Spectra. The spectra of compounds (a), (b) and (e) are different from those of their corresponding iodonium compounds (d) to (i). The iodo compounds absorb moderately between 250-280 µ with varying intensity. The absorption bands in this region are broad with inflexions at the wavelengths noted in Table 4. In the spectra of the iodonium compounds, on the other hand, there is no absorption between 250-265 µ region but two inflexions are noted at 270 and 280 µ among compounds (f) to (i) while-there is only one broad band noted at 285 µ among (d) and (e). For compounds (f) to (i) there are two high intensities, well separated bands noted at 241 ± 2 and at 219 ± 2 while for compounds (d) and (e) these bands are noted at 232 and 235 and at 219 and 223 µ respectively. It is noted that the intensity of the bands in the 270–80 μ region in the iodonium compounds is approximately 10 times higher. The intensity of the 285 bands among the *p*-xylyl compounds (d) and (e) is higher than for the other iodonium compounds except (h). It is also noted that for (b) the intensity in this region is higher than for (a) or (c). The bromides in general have higher intensity than the iodides. It may be mentioned here that it was also reported in our earlier study³ on the phenyl and *p*-tolyl iodonium compounds that the iodonium compounds have much higher intensity compared with their parent iodo compounds. The intensity noted in the present iodonium compounds is of the same order.

The occurrence of two inflexions among the oxylyl and m-xylyl iodonium compounds compared with the single broad band in the spectra of the pxylyl compounds suggests that the charge disturbance in the former compounds is more than in the latter. The ring system of the p-xylyl compounds appears to be more conducive to electron delocalization, and that in the o and m compounds the plane as well as the angle between the plane of the rings is affected on onium compound formation mainly because of the position of the substituents.

The two extra bands noted at 230-40 and 217-23 nm may be assigned to the iodonium ion (with an enhancement in intensity for the iodide ion) and the ring $n \rightarrow \pi^*$ transition respectively. It is significant that both absorptions have higher intensity for the iodides than for the bromides and also that the bromides absorb at a shorter wavelength than the iodides as far as the 217-23 nm band is concerned. This may be because of the higher electronegativity of the bromide ion which makes the iodonium cation more electron deficient than does the iodide ion and it has been reported that an electron deficient cation such as a carbonium ion absorbs at a shorter wavelength than the corresponding electron rich compound.⁸ This explanation should also be applicable to the shift of the broad band in the 270-80 nm region to higher wavelength in the case of the *p*-xylyl iodonium compounds. The presence of two electron donor methyl groups in the para position makes the pxylyl group electron rich and hence the occurrence of the band at a higher wavelength. As a consequence of the higher electron density of the *p*-xylyl ring and the interaction of the lone-pair on the cation the iodonium ion itself becomes slightly less populated and hence the shift of the 240 nm band to 232-35 nm.

The UV spectra of the o-xylyl iodonium compounds are similar to those of the *m*-xylyl compounds but their intensity is lower in the case of the former compounds. The spectra of the p-xylyl compounds are different from the others in both position and intensity. It has been seen in the case of the phosphines and arsines that there is a broad band in the 270 µ region corresponding to the $\pi \rightarrow \pi^*$ transition and this is attributed to the interaction of the lone-pair with the ring π -electrons. Such a broad band in the *p*-xylyl compounds should be related to the interaction of the lone-pair on the iodonium cation with the ring π electrons. The inflexion noted for the o- and m-xylyl compounds suggest that the charge in the rings is disturbed so that there is a hindrance in the dissipation of energy in the vibrationally excited states of the ring. Such a case would arise due to differences in substituent position which do alter the electron density of the rings. From the IR spectra also it was found that the ortho- and meta-xylyl iodonium compounds were different from the p-xylyl compounds.

i is, however, pointed out that the observed

The spectral study reported here suggests that although the compounds present a 1,2,4-substituted ring system their spectra differ from one another because of changes in substituent positions, as is indeed expected of isomers. The intensity of the IR bands seem to be particularly sensitive to these changes.

References

- 1. F.M. Beringer and S.A. Galton, J. Org. Chem., 31, 1648 (1966).
- F.M. Beringer, M. Drexler, E.M. Gindler and C.C. Lumpkin, J. Am. Chem. Soc., 75, 2707 (1953).
- M.A.A. Beg and Y.Z. Abbasi, Pakistan J. Sci. Ind. Res., 12, 12 (1969).
- M.A.A. Beg and Samiuzzaman, Pakistan J. Sci. Ind. Res., 16, 17 (1973).
- 5. J.H.S. Green, D.J. Harrison and W. Kynaston, Spectrochim. Acta, 27A, 2199 (1971).
- M.A.A. Beg and Samiuzzaman, Pakistan J. Sci. Ind. Res., 16, 217 (1973).
- 7. D.H. Whiffen, J. Chem. Soc., 1350 (1956).
- V. Bertoli and P.H. Plesch, Spectrochim. Acta, 25A, 447 (1969).

aromatic sulphoxides, epoie olefins and tripheny phosphilie have previously been reported. In we have now kineticativ examined the system puridine + peroxybenzoic acid - pyridine loxide - benzoic acid, in the solvents given in Table 2. Sence of these solvents have been used in the previously reported similar studies. These solvents not only represented a wide range of dielectric constants but were also easily available in pure form and hence

their choice. This choice will, therefore, obviously be belofind in comparing the oxidative behaviour of difterent nucleophiles in similar environments.

Results and Discussion

The rate constants for the oxidation of pyridine with peroxybenzoic acid were determined using hexane, eyclohexane, chloroform, chlorobenzene butanol, eyclohexane, actione ethanol and acetonitrile as the solvents, arranged in their accarding order of dielectric constants at 30°C (± 0.5 °C) and in chloroform alone at 30.0, 40.0, 45.0 and 50.0°C (± 0.5 °C). The reaction was found to be second order with respect to both the reactants. The energy of activation was calculated from the Arthenius that and entropy of activation and other pivescal parameters for this reaction are and other pivescal parameters for this reaction are recorded in Tebles 1 and 2.

 A. graph of the rate constants versus the rangeroest of the dielectric constant of the solvents gave a straight

The evidation of primary anness to mitroso and nitro compounds, of tertiary anness to annee exides, of azo compounds to azoxy compounds and of nitrosamines to nitranness by the peressy acid has similarly been explained.^{7,3}

Experimental

All the solvents were purified by standard procodures.» Pyridine (B.D.H. reacoil grade), b.p.