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Abstract.

A conceptual, but concise, account of the nature of the partition gas chro-

matographic separation process, from the view point of thermodynamics and with special
reference to entropy changes, is presented. Based on a philosophical and qualitative approach,
illustrated through simple physical principles, the treatment embodies the quantitative aspects
of the problem as well. This has been taken up with regard to the free energy of dilution, or for
that matter, the entropy of mixing and unmixing. Furthermore, the quantitative contributions
of the carrier gas and the liquid stationary phases to the overall entropy changes have been
derived for a binary system, whereby the analysis reveals the isentropic nature of the chromato-

graphic separation process.

When a mixture of two gases, say 1 and 2, is passed
through a chromatographic column, loaded with a
suitably chosen stationary phase, the separation of the
two gases is achieved in the form of two bands. In an
ideal chromatographic column, which operates at a
constant pressure and in which the equilibrium bet-
ween the two phases is instantaneous and other possible
irreversible effects such as longitudinal and eddy
diffusion are absent, the concentration profile does not
change while passing through the column, and each
band obtained is of rectangular shape with well-defined
sharp rear and front. Although ideal conditions of this
type, and hence the rectangularization of concentration
profiles, cannot be realized in practical chromato-
graphic columns, the band spreading due to the effect
of diffusion at both ends of the band can, however,
be neglected provided the band width is much greater
than the HETP of the column. The assumption of
constant column pressure is equivalent to neglecting
the work of separation demanded by the viscous flow,
a condition which can be achieved in the limit. Even
if the effect of viscous flow in the column were finite,
it will have no influence on the separation, because it
is the same as would be in the case of carrier gas alone.
We observe that after the separation of the components
the column is found in its original state, showing that
an ideal chromatographic column can separate the
two components without any expenditure of work.

The question now arises whether we can interpret
the chromatographic separation as a reversal of the
diffusion process. If so, then in the light of the second
law of thermodynamics, according to which the diffu-
sion process is irreversible, the chromatographic
separation of the mixture cannot be achieved, since
the reversal of an irreversible cannot be performed
without doing any work. Apparently, we are faced with
a paradox and should naturally be interested in its
solution.

Qualitative Interpretation—A Simple Analogy. Let
V be the volume of the sample of two mixed gases.
On chromatographic separation, each component
occupies a volume of V; = V> = V. If these separated
components, kept apart by a partition, were mixed
again through a diffusion mechanism by removing the

partition, then the volume available to each gas would
be V4 V- instead of V; and V>, where V;+ V.=
2V. On the other hand, if the separated components
were fed back into the same column, one after the
other, with an appropriate time lag, equal to the time
of separation, the components will emerge from the
column as a ‘mixed band’ of volume ¥V, showing once
again that the volume of the overlapping gases is the
same as the volume of the initial sample of mixed
gases. This, in fact, offers the key to the solution of the
paradox.

The chromatographic separation is not the reversal
of the diffusion process. If it were the reversal, then on
mixing the separated components by diffusion, the
mixture, as stated above, will have double its original
volume.® Alternatively, we must first compress the
separate gases to one-half of their volume before
mixing them together through diffusion to obtain the
original volume V of the mixture. Whereas the first
stage (compression) is followed by a decrease of en-
tropy, the second stage (diffusional mixing) is ac-
companied by an equal increase in entropy, so that
the overall entropy change remains zero. This
obviously leads us to the conclusion that the mixing or
unmixing of components by partition chromatography
is an isentropic process, which can be achieved re-
versibly without any expenditure of work.

This reminds us of the use of semipermeable mem-
branes by means of which the irreversible process of
diffusion can be performed reversibly. That is to say,
that gases can be mixed or unmixed in such a way
that the entropy of the system before and after mixing
is the sum of the entropies of the separated gases—
Gibbs law of partial entropies. It is clear from this
that the partition chromatography bears an analogy
to the Planck device (a system of gas cylinders fitted
with an appropriate semipermeable membrane, placed
in vacuum, which can be telescoped into each without
friction) which allows reversible, isentropic mixing or
unmixing of gases without utilising any work. How-
ever, it must be observed that whereas the reversible
mixing or separation of gases through the use of ad hoc
semipermeable membranes could be a ‘thought ex-
periment’, the chromatographic separation or mixing
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does not suffer from this limitation, but is a practical
reality of much wider scope. It is interesting to note
that a stationary phase having a retentive power zero
for a gas must be conceived as an impermeable mem-
brane for that gas.

Quantitative Thermodynamic Aspects. While re-
solving the paradox, we concluded rather qualita-
tively that the chromatographic process is isentropic.
The discussion was confined only to the column inlet
(just before separation) and the column outlet (just
after separation). However, there is a whole gamut
of effects which occur even in an ideal chromatogra-
phic column right from the inlet to the outlet,? such
as the involvement of the mobile and the stationary
phases and the development (overlapping and separa-
tion) of bands of various constituents as they move
along the column which are in one way or other asso-
ciated with entropy changes. Although for any change
the thermodynamic functions, such as entropy, are
independent of the mechanism, depending entirely
on the initial and final stages, it is interesting to appor-
tion the overall entropy change and then see how at
any stage of development of chromatographic pro-
cesses the entropy is conserved.

Consider a component in the form of a plug
separated by an imaginary partition from the carrier
gas. Now conjecture that the partition is withdrawn,
under isothermal and isobaric conditions, allowing
spontaneous mixing between the two species, the
mixture occupying an extended volume proportional
to the column length L. This will certainly produce
what is usually (though perhaps inadvisedly) called the
entropy of mixing between the two different gases.
This gain in entropy is given by:

ASg= — Nk[x;In x; + (1 — x;)In(1 — x,)] )

where N is the total number of molecules of the mixed
population, k£ is the Boltzmann constant and x; the
mole fraction of the component mixed with the
carrier gas. As we are not interested in the absolute
values of the various contributions to the overall
entropy change within the column during the chro-
matographic separation, a more convenient parameter,
the reason for the choice of which appears later, will
be introduced. Assuming a column of uniform cross-
section A4, operating at a constant pressure P, the
total number of molecules N will be proportional to
the column length L. Dropping the proportionality
constant AP/kT we may write:

ASg= —L[x1 In x; + (I—xpIn(1—x,)] @)

As the component is soluble in the stationary phase,
we shall have to take into consideration the entropy
change in the stationary phase. This entropy change
arises from the dilution effect, on account of the greater
avidity of the component for the liquid phase. It is
effectively equal to the difference between the entropy
of the stationary phase of length L in equilibrium
with the vapour at mole fraction x; in the gas phase
and the entropy of the stationary phase of length
x;L in equilibrium with the pure vapour, the total
amount of the vapour being the same in the two
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Fig. 1. Entropy change due to (a) the stripping effect of
moving phase and (b) the retentivity of stationary phase.

lengths. This can pictorially be visualised as given
in Fig. 1. This entropy increase, usually referred
to as the entropy of mixing, is essentially due to
the lowering of the partial pressures of the two
gases which after mixing occupy an increased
volume. The free energy of dilution per mole, Ag,
from mole fraction unity to x; is Ag = RT In x;. As
the vapour in both cases is in equilibrium with the
stationary phase, Ag must also give the free energy
changein going from the stationary phase of length
x:L to length L. Recalling that 3G/8T)p= — S,
the entropy change per mole will be—R In x;. Taking
R; as the migration factor (not to be confused
with the gas constant R as given in above relations),
the moles of the vapour in the liquid phase will be
proportional to Lx; (I — R;)/R;, and hence the
required entropy change in the same units, AS;, for
the stationary liquid phase will be given by:

AS; = — Lx;(1—R;)/Ry.In x; (3)

Adding equations (2) and (3), the total contribution
to entropy from the gas and the liquid phases, for
rectangular shaped bands formed under the ideal
conditions, for a single component system extended
over a column length L, is given by:

AS—=——L [ R—lxx In x; + (I—xp)In(l—xy) ] ©)

For a multicomponent system, say containing »
components, the total entropy change associated with
the components and the stationary phase, we may
write the generalized expression:

n
1
AS:—L[ > R: xiInxi -+
1

i=1

(1—2_ xi)In(1—2>_ xi) ] (5)

i=] i=1

where i=1,2,3,...,n and Ri and xi are the migration
factor and the mole fraction of component i res-
pectively.

The Isentropic Nature of Chromatographic Process.
To demonstrate the isentropic nature of the chro-
matographic process, we shall make use of equation (5)
for the simple binary system in which only com-
ponent 1 is retained whereas component 2 travels
straight through the column (R, = 1) alongwith the
carrier gas. For this particular system, equation (5)
for the total entropy change associated with the un-
separated (mixed) components may be written as:
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1
ASM=——], [ R In x;+x2 In x2+(1—x—x5)
I
In (1—x;—x2) ] (6)

After separation, the band of component 1 will
still have the length L, since the unretained com-
ponent 2 is simply replaced by the carrier gas. On the
other hand, component 2 because of its higher con-
centration will occupy a smaller column length. As
the ratio between the molar concentrations of the un-
retained component and carrier gas will remain
constant, the fraction (x,/l—x;—x,) must always
have the same magnitude. If x, is the mole fraction of
component in the mixed state, then at the point of
separation from the first component, we should have:

(-]

*¥2 2 _ | giving
= oy
l—x1—x2 1—x;

X2
=1—x;

o

2

(7

where the superscript (°) designates the state of separa-
tion. It is evident from this that if L and L° be the
lengths of the unretained component before and
after the separation of the first component then
Xz =x3(1—xy) or x5 = Xx2/(1—xy).

Due to higher concentration the second component
must shrink from length L to L°[ =L(1—x;)] to main-
tain conservation of matter. Now we shall require to
calculate the entropy changes for the system when
components 1 and 2 are separated from each other.
In the case of separated unretained component we
need replace L by (1—x;) L, x; by x;—condition for
no change in band length—in the expression for the
mixed state which under condition given in equation
(7) gives:
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Component 2:

AS§=—L (1—xy) [ 1%szln

X2 +

1““%’1‘

o I 2 ]

I—x;

[—-222
( 1~—x1

Component 1:

1
A8 e e [ 7% x4+ (1=x1) In(l—xy) J

I I
Hence it may be shown that
1

AS? 4-AS2 =AS°—L [ Elenxx +(1—x)In(1—x;)+
xzInx,—(1—x)In(l—xy) +-(l—x;—x2) In(l—x;—x2) ]

or simply,

~l~x1 In x;+-x2In x24
R,

AS°= —
(1—x1—2x2) In(1—x1—x5) ] (8)

Comparing equation (6) and (8) we find for the
simple binary system under consideration that entropy
of unseparated system is exactly equal to the entropy
of the separated system, thereby showing that the chro-
matographic process is an isentropic process which
takes place in a reversible manner.
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