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Abstract. Since the advent of quantum mechanics, many models to explain the nature of
chemical bonding have been put forward. Some of these models are based directly on quantum
mechanical foundation while others involve semi-empirical parameters or ad hoc assumptions.
In the following articles (Parts I and II), various bonding theories developed relatively recently
have been discussed. Part I describes the concepts of the Pauli exclusion principle and the
linear transformations which are prerequisite to follow the ensuing arguments. These are
treated in some details because of their importance in showing correlation between different
models discussed in these articles.

The models treated here have been classified as (a) quantum mechanical and (b) non-
quantum mechanical on the basis of the arguments, as to their foundations. The models treated
under heading (a), Part I, are the Hartree-SCF scheme, the Walsh diagrams, the Linnet double
spin set model, and the FSGO model.

The idea of structure in regard to matter and energy
has been a very fundamental one in science. The
chemists have been particularly interested in the
former while the physicists in the latter. The struc-
tural concept in chemistry has been extremely helpful
because it correlates seemingly unrelated phenomena
and explains the behavior of chemicals under given
set of experimental conditions. On the basis of their
structural knowledge the chemists have been able to
predict the behaviour and properties of previously
unknown substances. This all goes on to show that
our belief that matter is made up of smaller structural
units (atoms, molecules, ions, nuclei, electrons) has
rendered today's chemistry possible.

There have been numerous theories put forward by
various scientists from time to. time to explain the
structure of atoms and molecules and the nature of
the chemical bond. With the appearance of more
sophisticated experimental techniques and accurate
data some of the old theories have to be abandoned or
modified. No theory has proved to be as revolutionary
as that of quantum mechanics. It should perhaps be
realized here that quantum mechanics has contributed
a great deal to human thought in general and has
achieved some striking successes for simple molecular
systems in particular but it has been able to give only
approximate answers for more complex systems
than the hydrogen molecule. This has led to
the formulation of new theories which, in spite of
being approximate, are near to the chemists' viewpoint
because of their simplicity and intuitive appeal. The
aim of this paper is to discuss briefly the post-quantum
mechanical theories of chemical structure and show
their usefulness and limitations as compared to the
better known theories like the molecular orbital and

valence bond theories. The more significant of these
theories are: (a) the tangent sphere and the charge
cloud model of Kimball and Bent, (b) the valence
shell electron pair repulsion (VSEPR) model due to
Gillespie and Nyholm" (c), the Linnett model, and
(d) the floating spherical gaussian orbitals (FSGO).

In very broad terms, the models to be discussed
here may be divided into two categories. On one hand
there are those models which have their roots in the
fundamental laws of quantum mechanics and the
results here are obtained by computations of integrals
which involve nuclear-nuclear, nuclear-electronic
and electronic-electronic interactions. The total energy
of a quantum mechanical system is, therefore, a
contribution from its potential and kinetic energy
components: the Hamiltonian spells out the kinetic
and potential energy parts. The use of Born-Oppen-
heimer approximation somewhat simplifies the Hamil-
tonian. The quantum mechanical models include the
well-known LCAO-SCF-MO scheme, the Walsh
model, the J-innett 'double spin set' model, and the
Frost FSGO model.

On the other hand, the Kimball charge cloud
model, the tangent sphere modeJ, and the VSEPR
models aim primarily to explain the space filling pro-
perties of particles with special emphasis on the ground
state bond distances and bond angles. By and large,
the conclusions arrived at with the help of these
models are qualitative depicting the trends rather-
than the extent of change in an observable property.
These models are 110tbased on quantum mechanical
postulates per se although they all use the Pauli
exclusion principle as the starting point. The division
in categories, namely (a) quantum mechanical and
(b) non-quantum mechanical is, therefore, justified.
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Prerequisite to the discussion of the above-mention-
ed models are the following two important quantum
mechanical principles, namely (1) the Pauli exclusion
principle and (2) the principle of 'linear transforma-
tions'. These will now be discussed in some detail.

The Pauli Exclusion Principle. In its most general
form the Pauli exclusion principle can be arrived at
from the principle of antisymmetry.

A system of many identical particles may be descri-
bed in terms of the space-spin coordinates for each par-
ticle. If two particles are labelled as I and 2, then XI
and X2 are their coordinates (space and spin) so that

XI = rr."1 and X2 = r2,CJ2

Here rI and r2 may be Cartesian coordinates
(XI, YI, ZI) and (X2, Yz, Z2) and CJI and CJZ the spin
coordinates.

Another important aspect of the particles under
consideration is that they are indistinguishable. They
may be electrons, neutrons, protons or other such
particles and their indistinguishability, according to
quantum mechanics, is a fundamental and indisput-
able property. It, therefore, immediately follows from
this that the probability for configuration in which
particle 1 is at position XI and particle 2 at position
X2 must always be equal to the probability of the
configuration in which the particles are intercharged.
This may be represented as:

The above expression means that measurable
physical properties such as energy and density would
be invariant under the coordinate transformation and
hence are symmetric with respect to the interchange
of coordinate.

It also follows from the above expression that:

r ") r 1
q, lXI, Xz J - +4 lX2, XI J

r "1
or -q, lX2, XI J

in which the wave-function is either symmetric or
antisymmetric with respect to the particle interchanged.

It is a basic postulate of quantum mechanics that
particles belong to either one of the above categories
and never cross over from one category to the other.
Electrons and atoms that contain particles with odd
number of mass units and show odd spin belong to the
antisymmetric category while those with zero or
integral spin belong to the symmetric category. Those
particles with the odd spin obey Fermi-Dirac statistics
and are called Fermions. On the other hand particles
with zero or even spin follow Bose-Einstein statistics
and are, therefore, known as Bosons.

It is experimentally established that the electrons
are Fermions and are, therefore, described by an
antisymmetric wave-function which changes sign on
the interchange of coordinates for any two electrons.
This is perhaps the most general statement of the
Pauli exclusion principle.

M. AFzAL

Let us suppose that an N electron system is subjected
to test in accordance with the Pauli exclusion principle
then

results if the coordinates of electron 1 and 2 are inter-
changed. Now suppose that electrons 1 and 2 have the
same coordinate X, then their indistinguishability
implies that HX,X, .. X N) = - 4(X,X, ... X N) which
means that 4 is necessarily zero

We conclude, therefore, that no two electrons can
occupy the same position and have the same spin.
This is another statement of the Pauli exclusion
principle. It also follows from the above that no two
electrons in an atom or a molecule can have all four
quantum numbers the same, which is perhaps the
most popular statement regarding the exclusion
principle. The restriction that no two electrons can
have the same spin orbital may be interpreted by
saying that two electrons will stay apart in momentum
space if they occupy the same coordinate space. This
requirement is related to the uncertainty principle
expressed in a six dimensional space-three momentum
coordinates and three spatial coordinates. It means
that each electron needs a minimum volume to be
occupied given by £::,.x £::"Y £::,.z /sp» £::,.py £::"pzr::=.h3.

Linear Transformations and Localized Molecular
Orbitals. The molecular orbitals that form .eigen-
functions to the Hartree-Fock Hamiltonian are
commonly called the canonical molecular orbitals
(CMO) or canonical Hartree-Fock orbitals. The
CMO wave-function in a molecule is delocalized to
encompass the entire molecule. In theory, more than
one such molecular orbital are present on a single
molecule, symmetry and the linear combinations of
the AO's primarily determine their number and shape.
Although some CMO's are more delocalized than
others, the basic picture of delocalization is a funda-
mental one. Each CMO is unique in the sense that
it forms an irreducible representation which is trans-
formable to other more localized orbitals by a unitary
transformation which leaves the electron density,
p, unchanged.t-" One, therefore, arrives at localized
molecular orbitals, LMO, from CMO by a unitary
matrix transformation. It must be emphasized here,
however, that the above argument is only pertinent to
cases of 'closed shells'.

Furthermore a many-electron wave-function without
configuration interaction is represented by a single
determinantal wave-function. This makes the mathe-
matics of molecular orbital theory comparatively
simple. On the contrary in the valence bond approxi-
mation the wave-functionh as to be written down as a
linear combination of Slater determinants which make
the VB wave-functions cumbersome to deal with.
CMO's have been particularly useful in the calculation
of ionization energies and in the interpretation of
molecular spectra. However, they do not lend them-
selves to easily imaginable physical pictures. LMO
on the other hand give meaning to concepts such as
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independent bonds in molecules, bond dissociation
energy, and force constant.

Let us see, for example, how the ideas developed
above explain some fundamental structural notions
in simple molecules. A typical molecule whose CMO
and LMO structures are well understood is that of
methane. With the use of minimal basis set, namely
the 2s, 2p x, 2py, and 2pz on carbon and Is on hydrogen,
the following linear combinations yield molecular
orbitals for CH4 (Fig. 1).

crs =Cr2s+C2(lsa+ lSb+ lsc+ lsp)

crx =C32px+C4(lsa-lsb+ lSc-lsd)

cry =C32py +C4(1Sa -lSb -lsc + ISd)

crz =C32pz+ CilSa+ ISb-1Sc-lsd)

The coefficients Cr to C4 are determined to give
SCF-LCAO-MO. The molecule belongs to the sym-
metry group Td and «s, ex, cry, and ez form irreduci-
ble representation of the group; «x, cry, and «z being
degenerate. The energy diagram for CH4 is given in
Fig. 2. The ground state configuration of CH4 turns
out to be CH4(crS)2(crx, cry, crz)6 in which two electrons
accommodate in a molecular orbital of one symmetry
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Fig. I.Positionsof hydrogennuclei for LCAOs' in methane.
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Fig.2. Atomic and molecularorbital energiesin methane.
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Fig. 3. Four localized hybrid orbitals (lmoI, Imcj, lrnoj
and Im oa) in methane.

and the remaining six in three degenerate orbits of
another symmetry. In other words the CMO picture of
CH4 does not formulate four equivalent tetrahedral
bonds for CH4. Here electron density distribution is
no doubt tetrahedral, still it does not obviously lead
to a model where electron density concentration is
greatest between C-H nuclei. Also, it is not immedia-
tely apparent that the bond properties of CH4 are
transferable to other hydrocarbons of different sym-
metry species. These molecular orbitals are very help-
ful to predict the ionization potential and spectra of
CH4. On the other hand they are not effective to
explain the equivalence of four bonds-their bond
length and bond dissociation energy.

The LMO model for CH4 is best arrived at through
hybridization of the AO's on carbon. This yields four
equivalent orbitals arranged tetrahedrally in space,
called sps hybridized orbitals. The orthonormal sp3
wave-functions constructed by mixing together the
S and the p orbitals may be represented by the follow-
ing (Fig. 3):

Sp!- k2s+ t(px+ py+ pz)
sPb=t2s-H( -px-py+pz)
sp~=t2s+ Hpx-py-pz)
sp}-t2s+t( -px+py-pz)

The four equivalent LMO are now constructed as.

, 3 '
LMOr = C1spa+C21sa

, 3 '
LM02 = C1spb+C21sb

, 3 '
LM03 = CrsPc + C21sc

LM04= Crsp~+C2Isd

Where 1= a.b.c.d.

It can be shown that linear transformation ofCMO's
of CH4 changes them into LMO's. Unlike the CMO's,
the LMO of a molecule are not eigen-function to the
Hartree-Fock Hamiltonian and hence yield poor
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estimates of the ionization energies. Also, the LMO
model is less effective for molecules where degeneracies
occur and the idea of resonance has to be brought in
artificially to explain the inadequate representation of
localized band structures.

After going through the Pauli exclusion principle
and the principle of 'linear transformation' we now
divert our attention to the actual description of various
structural models that are based on these principles.

Quantum Mechanical Models

1. Self-Consistent Field Method. The most ac-
<::urateand perhaps the most well-known procedure to
obtain molecular and atomic orbitals is due to
Hartree, Fock, and Slater. The complexity in choosing
an orbital for an electron immediately arises as one
goes from a simple hydrogen atom to a helium atom.
The spherical Is orbital of hydrogen seems to have
lost its meaning when the two electron helium atom
is carefully examined. The Hamiltonian of electronic
nuclear interactions looks pretty much the same here
as in the hydrogen atom but an additional e2jrl2
electron-electron repulsion term appears in the
potential energy part of the Hamiltonian. This makes
it difficult for each electron to retain its original
spherical potential and the orbital concept for electrons
becomes ambiguous. In such a situation the validity
-ofassigning two electrons to Is orbital in helium atom
may be seriously questioned. An attempted solution
of the problem leads one to arrive at the idea of one
electron self-consistent field wave-functions in many
electron systems.

It is realized at the outset that any electron in a
system of N electrons moves in the potential field of
the nucleus plus the field generated by N-1 electrons,
and this helps us in determining some effective poten-
tial VCrI) for that electron. It is assumed that VerI)
has spherical symmetry which resembles the true
potential of electron 1. This is not strictly true but as
it turns out VerI) approximates the best potential
for that electron 1 is able to get at. The electron
1 now moves in an average field of all the N-1
electrons and there are no instantaneous interactions
of electron 1 with all other electrons. It allows one to
write down the wave-function of electron 1 in terms
of its own coordinates and the coordinates of all other
electrons are neglected. The influence of N-1 elec-
trons, however, is built in the potential energy
function of electron 1. This brings us to a situation
where we can write down the wave equation for any
one electron if wave-functions for all other electrons
are known. Now this really does not solve our problem.
A solution of the problem was suggested by Hartree.

In the Hartree scheme, the wave-functions for all
the electrons are first written down as a mere con-
jecture. We may now choose one electron out of the
lot and determine the field provided by all others.
This helps us in giving a potential to this electron and
solve the Schroedinger equation for our chosen elec-
tron. This revised function may now be used to com-
pute the average field for the second electron giving
improved wave-function for the second electron.
The same process is repeated for the third electron
and so on until a set of first improved orbital for all
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the N electrons is obtained. The procedure is repeated
and second improved orbitals for all the electrons
appear. The revision of orbitals is carried out until
the interaction procedure leaves the orbitals almost
unchanged. This finally gives us orbitals for anyone
electron which are determined by the nuclear field
and the root mean square potential of all other
electrons. This is true of any electron we happen to
choose. The method is, therefore, called the self-
consistent field method or Hartree SCF.

According to the SCF scheme, a many electron
wave-function", may now be written down as a pro-
duct of one electron wave-function

q,(XI,X2 ... XN) = 'Pr(XI)'P2(XZ) ... 'PN(XN)

Here 'PI(XI) represents orbital (space and spin) for
electron 1 only. This in fact follows from the assump-
tion that each electron has a self-consistent potential
field VCr) which enables us to write down the Hamil-
tonian for an atom as the sum of one electronic
Hamiltonians of its kinetic energy T and potential
energy V components in the following way

H = h(1)+h(2)+ ... h(N)

=Lall electrons heN)

where h(l) and h(2) are one electronic Hamiltonians
containing one electronic kinetic and potential energy
terms.

The many electron wave-function", has been re-
presented in the previous paragraph as a product of
one electron wave-functions 'PI (spin orbitals). This
representation is unsatisfactory with regard to the
Pauli exclusion principle. Fortunately, there is a
shorthand method for representing a many electronic
wave-function in accordance with the Pauli principle.
The method is due to Slater and makes use of the
properties of determinants. It is an important pro-
perty of determinants that it changes sign when two
rows or columns are interchanged. This is equivalent
to interchanging coordinates for any two electrons.
Furthermore, if two electrons occupy the same co-
ordinates (space and spin) the determinant vanishes.
It means that no two electrons can occupy the same
spin orbital. A typical Slater determinant for N
electron system may be written down as

'Pl(XI) 'PI(X2) ... 'Pr(XN) .

'PN(XI) 'PN(X2) ... 'PN(XN)

where 1j Y'N;is the normalization factor, bracketed
(XI) and (X2), indicate coordinates for electrons
numbered 1, 2, and 'PI' 'P2, stand for spin-orbitals
numbers 1 and 2.
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In these terms the Hartree-Fock SCF method may
be described as finding those spin-orbitals that
minimize the average energy calculated from a single
Slater determinantal wave-function using the well-
known variation principle.

2. Walsh Diagrams. A useful method for the correla-
tion of orbital energies and molecular geometries has
been developed by Walsh. 3 The Walsh diagrams give
curves which show variation in binding energy of
molecules with their bond angles. A triatomic molecule
of the type AH2 may be assumed to be linear or bent.
Walsh diagrams predict that AH2 molecules with 4
valency electrons should have a linear geometry in
their ground states while those with 5-8 valency
electrons should be bent.

A typical Walsh diagram for triatomic molecules
is given in Fig. 4. The molecule HAH belongs to the
symmetry group Doc h when HAH angle is 1800 and
to the point group C2v for 90° angle. Increase in the
HAH angle from 90 to 180°, transforms the bent
molecule to its linear form, and the orbitals aI and b2
of C

2V
point group eventually become "s and au

respectively of the linear molecule. The molecule
with the (ag, au) configuration should therefore be
more stable as these lie lower in energy than their
(a-J») counterparts. This may be explained with the
help of LMO or CMO model. In terms of the localized
orbital picture, the bonding in a bent molecule at a 90°
angle is solely due to the p orbitals of the central atom
overlapping into the S orbital on hydrogen. As the
angle is increased, s orbital on A starts mixing with
the p orbital and takes part in the bond formation.
In other words, an s-p hybrid orbital in the linear
molecules makes a stronger bond than a pure p
orbital in the bent molecule.

In the delocalized model, the following combina-
tions for orbitals aI-a" and b2-au are possible

b

linear bent
as = SA' (lsa + Isb) aI = pz,{lsa + Isb)

au = Py, (lsa- Isb) b,= PY' (Is,- Isb)

The energy correlation of these orbitals with the
variation of bond angle may be explained with the
help of the following assumptions: (i) the orbital
sA doses not participate in bonding for a 90°-bent
molecule; (ii) the participation of sA orbital alongwith
a p orbital in the formation of a molecular orbital
lowers the energy of the molecular orbital in com-
parison to the orbital obtained from a pure p orbital;
(iii) all other effects being equal, those orbitals which
are antibonding between the end atoms YIeld the
strongest bonds when the end atoms are farthest
apart (linear). If the orbital is bonding between the
end atoms, the most effective bonding occurs for the
cases where the end atoms are nearest, namely in the
90° bent molecule. Orbitals sA and lsa + JSb are
responsible for bonding in ag and p« and lsa + ISb
in aI, while a mixture of sA, pz, and ISa + ISb will
take part in bonding for molecules with an HAH

. angle >900 and < 1800
• It, therefore, follows that as

lies lower in energy than aI which means that the linear
configuration is energetically more stable than the

HAH angle

Fig. 4. The Walsh diagram for molecules of the type HAH.

nonlinear configuration. The all-a2 orbitals involve
the combination of ISa-lsb and Py for both linear
and bent molecules and since ISa-lsb is antibonding
between the end atoms, it should yield a lower energy
structure in which the end atoms are farthest apart
(linear).

On the basis of the argument developed above,
it is expected that molecules of the type AH2 with
less than five valence electrons should be linear in
the ground state and BeH~ and HgH2 are found to be
so. Furthermore, molecules in which the bI orbital is
full or partially occupied, makes the bent configura-
tion more probable. Hence molecules containing
5, 6, 7, or 8 valency electrons are likely to be bent
in the ground state. Consequently, BeH2 and HgH2
should be bent in the first excited state.

The steepness of the curves aI-ag' b2-atl' and
aI-7tU may vary from molecule to molecule. For
example in a series like H20, H2S, H2Se, if the bonding
curves fall less steeply from H20 to H2Te, the bond
angle would perhaps tend to decline. A similar effect
would result if the ar-7tu curve rises more steeply.

A less common, perhaps more general way to
arrive at the molecular geometries is to arrange re-
pelling nuclei in the charge density of electrons in such
a way that the internuclear repulsion forces are neu-
tralized. This brings into play the Hellmann-Feyn-
mann electrostatic theorem, according to which the
force on nuclei a and b is given by

z.z. I [~ Za ~ z,Force= -R2 - -2 p - cos6adv + Pz
ra2 rb

cos6bdv]
Here the first term is the repulsion between the nuclei,
and the expression in brackets contains two attractive
terms between the nuclei and the electronic density
distribution p. Any changes in p will perturb the
force on the nuclei and consequently this causes the
molecular geometry to change. The perturbation in
charge densities causes the variation in angles of mole-
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cules like H20, H2S, H2Se, and H2Te or in the species
N02 (132°), N02- (115°). Similarly small perturba-
tion in molecules may be treated on the basis of .0.P,
the change in electronic densities, when an atom of
hydrogen in methane is replaced by a halogen atom.
The trouble is that high accuracy p calculations are
not easy to make.

3. The Linnett 'Double Spin Set' Model. Histori-
cally, two ideas have made significant contributions
towards the development of the structure of the atom
and chemical valence:

(1) That there is a tendency in atoms to react or
gain or lose electrons in order to acquire inert gas
configuration. This means that the presence of eight
electrons in the outermost orbit give the atom a 'stable
shell of electrons.'

(2) That the combination between two atoms or
ions take place through a pair of electrons in which
each atom contributes one electron. Strictly speaking
it is a 'shared pair' that is responsible for bonding.

The first idea is due to Kessel- while the second
was proposed by Lewisv and developed by Langmuir.o
Through years the above concepts developed into the
'octet rule' and the 'electron pair bond' as rules of
thumb for structural arguments in chemistry, until
'single electron bonds, 'inert gas compounds, and
'paramagnetic 02, demanded a more sophisticated
picture of the structure of molecules to be constructed.
Quantum mechanics came to the rescue but the simple
classical ideas of Kossel, Lewis, and Langmuir are
still intuitively appealing to the chemist. The Linnett
'double spin set' model is in fact a revival of the
days gone by and has much scientific as well as
nostalgic value. Undoubtedly, the Linnett representa-
tion for molecules has many advantages over classical
representation as will become evident from the follow-
ing discussion.

Linnett7,g starts with an argument based on the
exclusion principle and makes the additional ob-
servation that the effect on the particle (neutral) spin
correlation is enhanced by making the particles elec-
trically charged. This makes the electrons avoid each
other more than would be expected on the basis of
spin correlation alone. This puts some restriction
as to the extent of electron pairing. On the basis of
his quantum mechanical reasoning, Linnett proposed
that eight electrons in neon may be considered to be
occupying two tetrahedra, four of each spin-set, instead
of the assumption that they are present as 'four pairs'.
Quantum mechanical justification for such a viewpoint
may be given in the following words by Berry:s

'The tendency of one electron to repel another
and to force the wave-functions of the two electrons
to have low amplitudes when the electrons are near
gives rise to the concept of the correlation hole.
This hole takes the form of a region around each
electron, the region where the fluctuation potential
is very large, where no other electron is likely to be.
The Pauli exclusion principle establishes this hole
moderately well for electrons of the same spin, but
it has no effect on the spatial distribution of elec-
trons with opposite spins, so it does not help to
introduce anv correlation effect. In this case the
correlation hole must be a pure coulomb hole and
can only be introduced in a wave-function by in-
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elusion of specific terms above and beyond the
Hartree-Fockfunction.'
Eight electrons may be arranged in pairs at the

corners of a tetrahedron* which is equivalent to cubic
arrangement with only opposite corners occupied
(Fig. Sa), or in two tetrahedra where each electron
sits at each corner of a cube (Fig. 5b). It is remarkable
that cubic and tetrahedral electronic configuration of
atoms were intuitively derived before the development
of ideas about electron spin. In the Linnett double
spin set model the cubic representation holds with the
modification that opposite corners of a cube are
occupied with electrons of opposite spin (Fig. 5c).
This helps each electron to avoid its nearest neighbour
(electron of the opposite spin) by a length equal to the
edge of a cube and to repel electrons of the same spin
even at a greater distance as next nearest neighbours.
This is equivalent to superimposing two tetrahedra
as shown in Fig. 5d. The overall effect of such an
electron correlation is that the electronic structure for
molecules has to be represented by two 'spin sets'
thus leading to some interesting observations.

According to the Linnett scheme the tetrahedral
arrangement of electrons of one spin set may be 'coin-
cident' or 'non-coincident' to the other spin set. In the
Lewis scheme it was always coincident thus leading
to 'electron pairs', in the new scheme the electrons
mayor may not be paired. For example, the fluorine
molecule is represented by the following two spin set
pictures. These pictures are superimposed to account
for all 14 valence shell electrons, 7 of each spin set

M&
a d

Fig. 5. Various ele-ctron distributions for eight electrons:
(a) tetrahedral arrangement for 'electron pairs'; (b) cubic arrange-
ment, each electron occupying a corner; (c) two tetrahedra (one of
each spin set) arranged in a cube; (d) another way of looking at
two tetrahedra of Fig. 5c. .

Fig. 6. Linnett structure for the F2 molecule.

(b)

x

+ H'~'
x

• x

= 1I·411.
x~ . .,

(a)

x

+H~'

x
H

= H~~~
• x
H

Fig. 7. Various ways to represent (a) HF and (b) H20 mole-
cules using Linnett double spin set model.

*Interestingly enough, Lewis arranged four electron pairs in
the middle of the edge of a cube which gives only an irregular
tetrahedral configuration, -
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(Fig. 6). In HF and H20, 8 valence shell electrons are
arranged in two spin sets of 4 to yield the following
structures (Fig. 7). Similarly, N2 and 02 have the
following structures (Fig. 8).

This apparently tedious representation has been
simplified by using a shorthand notation. A heavy line
is used to stand for two electrons of opposite spin
occupying the same orbital (an electron pair in the
normal sense) and a light line to represent two electrons
of opposite spins, occupying different orbitals. With
this in mind, the formulae for some of the molecules
previously described may be given as in Fig. 9. The
O2 molecule turns out to exhibit some interesting
features." The model predicts that O2 in its ground
state should be paramagnetic and it is. The excited
states of O2 has been shown in Fig. 10.

The Linnett 'double spin set' model, like the Lewis
model, reveals clearly the number of electrons res-
ponsible for bonding in molecules and in addition
gives information as to the number of electrons belong-
ing to each 'spin set', an obvious advantage in pre-
dicting magnetic properties of molecules. The model
works for most molecules without the magic of hy-
bridization. Due to these merits, it will not be sur-
prising if the model will enjoy increasing popularity
in the future.

4. The FSGO Model. The gaussian orbitals have
been extensively used by many authors to calculate
energies and geometries of atoms and molecules.tv'<a
In most calculations the SCF-MO scheme has been
applied for gaussian type orbitals. These orbitals have
the general form 'P = rll+ ie-lXr2•

Where IX is the variation parameter and n takes on
values 0, 1, 2 .... They differ from the Slater type
orbitals (STO) in their property of decaying to zero
much more quickly, particularly for large internuclear
distances. This of course is obvious from the plots in
Fig. 11, where e=r? is gaussian and e-a.r represents an

STO. Furthermore, the gaussian type orbitals (GTO)
have no well defined 'cusps' and are, therefore, a poor
approximation for an atomic orbital at small inter-
nuclear distance (Fig. 11). For a more accurate re-
presentation of atomic orbitals, however, linear com-
binations of several spherical gaussians are usually
taken. This means that for accurate energy calcula-
tions in GTO's many more integrals are needed as

or

.~
~.. . .

x

~

x
x "'0 0'

/ X
X

~~:
. . .
x x x

+

Fig. 8. Linnett structures for (a) N2 molecule, (b) and (c) 02
molecule. Here (b) and (c) represent two out of the three possible
electronic rearrangements under the Linnert scheme. For details
see Fig. 10.
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compared to STO's. This difficulty is counterbalanced
by the fact that integrals involving gaussians are much
easier to evaluate as compared to Slater type integrals.
Nevertheless, the cusp effect on the nuclei is only of
secondary importance as regards energy calculations.
According to Hellman-Feynmann theorem the 'charge
pile up' between the nuclei is the major effect.

Both normalized and unnormalized gaussians are
useful for energy and geometry calculations. All
necessary integrals for the unnormalized gaussian have

HF,

I
H -0_

I
H

Fig. 9. Line representations for various molecules as pictured
by Linnett, A heavy line stands for an 'electron pair' bond in the
Lewis sense. A light line represents two electrons of opposite Spill
but occupying different orbitals.

x X
-x0""'0-X " /0=0

/ " 0(16g state), bond distance= I· 216 A.
Energy (kcal mole=t) above ground
state=23

(31:; state, paramagnetic),

bond distance=I.207 "-
Energy (kcal mole=t) above
ground state=O

(11:i"state), bond distance=I·227 A
Energy (kcal mole=I) above ground state=38

Fig. 10. Various electronic states for 02 molecule.

(c) or
2- or

Fig. 11. Curves showing plots of e-<xr vs e-otr2. Also showing ..
lack of 'cusp' for a GTO as compared to an STO.
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been given by Boys'< and in greater detail by Shavitt-s
while Preuss and Whitten formulas for normalized
spherical gaussians are given elsewhere.r6,I7

More recently Frost has developed a model which
uses floating spherical gaussian orbitals (FSGO) for
the calculation of energies and geometries for various
atomic and molecular systems.tf The model is perhaps
too native to give quantitative estimates of energies for
molecular systems as good as the SCF-MO scheme,
for example. Inspite of its simplicity, the model pre-
dicts remarkably well the trends in reproducing ob-
servable properties and molecular geometries in
chemical systems.

Other workers have also used floating gaussian
orbitals for molecular energy and geometry computa-
tions.w
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