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Abstract.

A simple and explicit mnemonic procedure for the derivation of the set of

Maxwell’s first order partial derivatives and the Clausius relationships, in terms of fundamental

thermodynamic parameters (V,T,P and S), is described with illustrative examples.

The pro-

cedure has been applied, in the first instance, to thermodynamic systems of constant and
variable composition and, later, extended to cover cases of constant volume, temperature,

pressure and entropy.

All this has been taken up with the aid of a computational procedure

based on an instructive logic rather than on a mathematical operational logic.

A formal aspect of thermodynamics deals with
Clausius and Maxwell differential relationships that
are usually discussed in terms of the Legendre trans-
forms for the Helmholtz energy 4, Gibbs energy G,
enthalpy H and internal energy E. The Clausius
relationships are the complete differentials of the
thermodynamic potentials just mentioned, while the
Maxwell relationships are first order partial derivatives
of the type (3x/8y)> where x,y and z are any of the four
fundamental parameters V, T, P and S.

A great many such relationships exist, and several
mathematical methods are available, 722 whereby they
may be derived. Also, there have appeared in litera-
ture some short-hand approaches to this effect,3
but rather with a limited scope. Consequently, in
view of the formal mathematical or conceptual diffi-
culties inherent in these methods, the student of ther-
modynamics is seldom successful in either deriving
or retaining in memory many of the relationships he
too often needs as ready reference. To obviate this,
the mnemonic approach presented here (Fig. 1) is
designed on the basis of an instructive logic. The
computational procedure involved is at once rapid
and explicit, and as the experience confirms it goes
reasonably well even in inexpert hands. We shall
show in a while how this figure embraces quite suc-
cessfully the whole spectrum of the Clausius and
Maxwell relationships for systems of constant and
variable composition, extended over to cases of
constant volume, temperature, pressure and entropy.

Mapping and Featuring the Mnemonic Figure. The
figure lends an easy construction. ‘A simple guess
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Fig. 1. The mnemonic figure,

verifies how the entry pictures varicus thermodynamic
parameters squarely’. Keeping this key-sentence in
mind, and the figure in view, a moment’s reflection
reveals that the figure may be mapped out in seconds.
This follows, of course, by starting anticlockwise
from parameter 4 that the whole sequence in the
square arrangement sets in at once, leading finally
to the terminal parameter S. And that is all.

In the posture shown, the figure may be conceived
as if it were assembled of four geometrically identical
trapezoids cemented together along their unparallel
sides in a way to inscribe an inset square VTPS. For
the sake of convenience, we shall name these trape-
zoids after the respective thermodynamic potentials
situated at the mid-point of the outer side. A hori-
zontal line bisects the inset square into an upper
positive and a lower negative half;this has been done
tentatively with a view to facilitate the assignment
of proper signs, positive or negative, to a
thermodynamic parameter as that of the half
in which it is housed. After these general remarks,
we now give a brief account of the essential working
principles for writing down the complete set of the
Clausius and Maxwell relationships by employing the
trapezoids and the inset square respectively.

Writing the Clausius Relationships. The most
useful thermodynamic systems are those that have a
constant composition (fixed number of moles, N)
and are subjected to only a hydrostatic pressure,
and in which the work done is of PdV type. The
whele of the thermodynamics of systems of this
character may be developed by varying, in principle,
two of the fundamental variables contained in either
of the following variable sets: (i) 4,7,V; (ii) G,T,P;
(iii) H,S,P; (iv) E,S,V. It may then be conceived that
a thermodynamic potential in each of these four
sets will depend for its value on the remaining two
variables—a fact that provides a direct justification to
consider a thermodynamic potential, in a given
trapezoid, as a natural function of the two contra-
positioned (facing) independent parameters. Hence,
we have the following functional expressions:

A= A(T,V) (Trapezoid A)
G = G(TP) (Trapezoid G)
H= H(S,P) (Trapezoid H)
E=E(S,V) (Trapezoid E)
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Let us start with an obvious example. Suppose we
want to write a relationship for the change in internal
energy dE in terms of changes in volume dV and
entropy dS. In doing so, we would certainly select V'
and S as the two independent variables in trapezoid
E—the flanking parameters P and 7, however, are to
be appended as coefficients to d¥ and dS respectively.
Recalling that ¥V is negative and S is positive by virtue
of our sign convention (loc. cit), the trapezoid at once
suggests:

dE= TdS — PdV (1)
which is the desired Clausius relationship. From
these premises now emerges the formal skeleton of the
remaining three Clausius relationships applicable to
thermodynamic systems of constant composition,
namely,

dA = — SdT —PdV )
dG = — SdT + VdP (3)
dH = -+ TdS--VdP )

Writing the Maxwell Relationships. The process
simply consists in expressing a first order partial
derivative of the Maxwellian type in terms of a con-
nective notation manifesting a directional dependence.
Accordingly, using an arrow as a connective between
any two parameters, the mnemonic version of the
partial derivative (8x/8y)z, for instance, would look
like x—y, which represents a directional conjunction
between x and y. However, in this mnemonic nota-
tion, the parameter z (to be kept constant) has been
omitted because of the fact that any such parameter
is always placed diagonally, in the mnemonic square,
to x and thus can be labelled to the derivative
rightaway.

Now, for the purpose of writing the Maxwell
relationships, we shall be confining ourselves to equat-
ing those conjunctional pairs only that are directionally
equivalent, i.e. which connect two unlike parameters
in the same parallel direction. Based on this guiding
rule—the rule of directional equivalence—the formal
structure of the Maxwell relationships can be built
up. To exemplify, we consider the thermal expansion
of a body at constant pressure; that is to say, we aim
at havinga Maxwell relation involving (8V/3T)e. In our
mnemonic notation, this partial derivative would look
like V—T, which when equated with its permissible
conjunctional equivalent S—P will yield the desired
result. Thus, within the domain of the rule of directi-
onal equivalence, (8V/3T)p==—(3S/5P)r, (constant
N), where P and 7, held constant, are the diagonal
parameters to V and S respectively and the positive
and negative signs on the right and left-hand sides of
the expression are to be inferred from those of P and 7.
Likewise, we may have (3V/8S)p=(3T/3P)s; (3S/3P)r
=—3V/8T)p: (3P[8T)y=(3S/3V)r.

As is implied directly, the inset square may as well
be utilized alternatively for systems of constant che-
mical potential, n. In this context we could have:
T>V=P->S8; S>V=P>T; T>P=V->8.

Extending to other Systems. The Clausius relation-
ships for systems of constant composition may be

Mi T v M
(A) (8)

Fig. 2. The transformed squares: (A) for systems at constant
‘P’ and or V; (B) for system at constant S or T.

adapted easily for those of variable composition by
simply adding to them the summation term Zyp;dNi.
For example, dE, =TdS — PdV -+ =u;dNji, and so on
for the remaining relations of the Clausius set. For
the Maxwell relations, the inset square may be
effectively transformed, in the first instance, through
the diagonal displacement of the parameters P and V
and, later, through that of S and 7, into two postures
as shown explicitly in Fig. 2.

Now, referring to these transformed squares (A)
and (B), and keeping track of the procedure laid down
before, we may summarize the Maxwell relations
under constraint of constant pressure, volume, tem-
perature or entropy as specified against each:

Square (A)

Constant P Constant V'
T>N= ui—>S T—N=pi—>S
S>N= ui>T S>N= pui=>T
T—=pi = N->S T—pi= N->S

S—upi= N->T
Square (B)

Constant S Constant T
P>N= yi>V P>N=yi»V
V>N= ui—~>P VN = ui—>P
P—ui = N->V P>y = N->V
V—)y.iz N->P
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