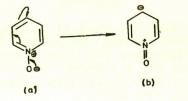
Pakistan J. Sci. Ind. Res., Vol. 15, Nos. 4-5, August-October 1972

STUDIES ON HETEROCYCLICS

Part III. The IR Spectra of Some Quinoxaline N-oxides


M.K.A. KHAN, M. IKRAM QURESHI and YUSUF AHMAD

PCSIR Laboratories, Karachi 39

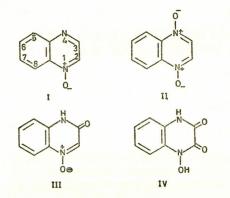
(Received April 11, 1972; revised July 29, 1972)

Abstract. The IR spectra of several quinoxaline 1-oxides, quinoxaline 1,4-dioxides, quinoxalin-3-one 1-oxides and 1-hydroxyquinoxalin-2,3-diones (2,3-dihydroxyquinoxaline 1-oxides) have been determined. Assignments for ring stretching vibrations, carbonyl stretching frequencies and *N*-oxide vibrations have been suggested.

Considerable work has been reported on the IR spectra of aliphatic and aromatic *N*-oxides. While aliphatic *N*-oxides exhibit intense N^+ —O⁻ stretching vibrations^I in the region 970–950 cm^{-I}, aromatic *N*-oxides show strong N—O stretching vibrations²⁻⁴ between 1300 cm^{-I} and 1200 cm^{-I}. This higher value is explained, in pyridine *N*-oxides for instance, by the contribution of structure b

No systematic information on the IR spectra of quinoxaline *N*-oxides is, however, available and such a study was therefore considered appropriate.

In continuation of our studies⁵ on the spectral characteristics of quinoxaline derivatives, we have examined the IR spectra of some quinoxaline *N*-oxides. Several workers have described the IR spectra of quinoxaline derivatives.^{3,4,6,10} Clemo and Daglish¹¹ have reported the *N*-oxide band in quinoxaline 1-oxide at 1370 cm⁻¹ and a weaker band at 1100 cm⁻¹. Quinoxaline 1,4-dioxide also exhibits N—O stretching vibrations at 1370 cm⁻¹.


Several quinoxaline 1-oxides, quinoxaline-1,4-dioxides, quinoxalin-3-one 1-oxides and 1-hydroxyquinoxalin - 2,3 - diones (2,3 - dihydroxyquinoxaline 1-oxides) have already been reported¹³ and the others were prepared by the methods cited in the literature.^{13,14} The IR spectra of these compounds were measured as KBr discs and the bands observed are tabulated in Table 1.

By analogy with the assignments made by Rydon and Undheim⁸ in their study of quinoxalines, the bands observed in the 1625–1440 cm⁻¹ region of the

TABLE 1.	CHARACTERISTIC BAND*	(cm ⁻¹) IN THE IR	SPECTRA OF	SOME QUINOX.	ALINE 1-OXIDE AND
		QUINOXALINE 1,4-	DIOXIDES.		

	N—OH stretching vibrations	C—O stretching vibrations	CC & CN ring stretching vibrations	N+—O- stretching vibrations	Other bands
Quinoxaline 1-oxides Unsubstituted 2-Phenyl 2,3-Diphenyl	Ξ	-	1575s, 1504s, 1429w 1563w, 1493w, 1453w 1575w, 1481m, 1449w	1379m 1355s 1350s	889s (2H),† 810m, 758s 889s (1H)†, 817s, 780s, 766s 984s**, 794w, 759s
Quinoxaline 1,4-dioxides Unsubstituted 2-Phenyl	Ξ	Ξ	1481w 1493w	1342s 1370s	909s, 760s (4H) [†] , 704s 870s (1H) [†] , 837s, 769m, 755m, 738s (4H) [†]
2,3-Biphenyl 2,3-Dimethyl 6- Methyl			1575w, 1480m, 1450s 1630m 1505m 1527m 1460m	1333s 1370w 1364s	930m, 900s, 772w, 760m, 705m 820m, 784s 885w, 844w, 816s (2H) [†] , 797s
Quinoxalin-3-one 1-oxide Unsubstituted 2 Cyano-7-methoxy 2 Cyano-7-ethoxy 2 Cyano-7-chloro		1667s 1675s 1675s 1670s	1615m, 1540m, 1499m, 1460m 1616w, 1545m, 1493w, 1460w 1600w, 1527m, 1490m, 1460w 1625w, 1535m, 1500w	1395m 1397m 1399s 1400s	862w, 844m, 763s (4H)† 826m, 746w, 702m 870m (1H)†, 815m, 800w, 746m 877w(2H)†, 755m, 733w
1-Hydroxy quinoxalin-2,3-da (2, 3-dihydroxyquinoxaline Unsubstituted 7-Methoxy 7-Ethoxy 7-Chloro		1635s, 1690 1635-1675s 1670-1725s 1670-1725s	1504m 1626m, 1504w	=	878m (4H) [†] , 754s, 722s 937m, 858s, 805w, 735s 845m, 797s, 738s 866m, 810m, 763m, 714 w

* s, strong; m, medium; w, weak. †, out-of-plan bending of aromatic hydrogens. **, in-plan bending.

spectra of quinoxaline 1-oxides and 1,4-dioxides were assigned to in-plane aromatic ring vibrations. The *N*-oxide band in quinoxaline 1-oxide occurred at 1379 cm⁻¹, which is close to that reported by Clemo and Daglish.¹¹ However, in 2-phenylquinoxaline 1-oxide and 2,3-diphenylquinoxaline 1-oxide, the N—O stretching vibrations occurred at 1355 cm⁻¹ and 1350 cm⁻¹ respectively, illustrating the sensitivity of N—O stretching vibrations to substituents effects.

Quinoxaline 1,4-dioxides exhibited weak ring stretching vibrations and stronger N—O bands. In 2,3-dimethylquinoxaline 1,4-dioxide, the ring stretching vibrations of medium intensity occurred at 1603 cm^{-1} and 1505 cm^{-1} . The more intense *N*-oxide band occured at 1370 cm^{-1} . Strong *N*-oxide bands were observed in 2-phenylquinoxaline-1,4-dioxide and 6-methylquinoxaline-1,4-dioxide at 1370 cm^{-1} and 1364 cm^{-1} respectively. Quinoxalin-3-one 1-oxides showed characteristic

Quinoxalin-3-one 1-oxides showed characteristic C = O stretching vibrations between 1600–1700 cm⁻¹. Fairly intense *N*-oxide bands were observed around 1397 cm⁻¹. The 1-hydroxyquinoxalin-2,3-diones ($\equiv 2,3$ -dihydroxyquinoxaline 1-oxides) exhibit broad C = O stretching vibrations in the region 1635 to 1725 cm⁻¹, weak ring stretching vibrations at about 1390 cm⁻¹ and strong N—OH bands at 3325–3450 cm⁻¹.

The assignment of N—O stretching vibrations in some of the quinoxaline derivatives was complicated by the presence of strong ring stretching vibrations in the same region.

References

- R. Mathis-Nel, R. Wolf and F. Galais, Compt. Rend., 242, 1873 (1956).
- H. Shindo, Chem. Pharm. Bull. (Tokyo), 7, 407, 791 (1959).
- 3. H. Shindo, Chem. Pharm. Bull. (Tokyo), 6, 117 (1958).
- 4. C. Kaneko, Yakugaki Zasshi, **79**, 428 (1959); Chem. Abstr., 1712b (1959).
- 5. M.K.A. Khan, A. Mohammedy and Y. Ahmad, Pakistan J. Sci. Ind. Res., 13, 206 (1970).
- 6. G.W.H. Cheeseman, J. Chem. Soc., 3983 (1961).
- 7. A.R. Katritzky and R.A. Jones, *ibid.*, 3670 (1959); 2942, 2947 (1960).
- H.N. Rydon and K. Undheim, J. Chem. Soc., 4685 (1962).
- H.H. Perkampus and A. Roders, Z. Naturforsch., 15b, 1 (1960); Chem. Abstr., 20481b (1960).
- J. Derkosch, Monatsh. Chem., 92, 1107 (1961); Chem. Abstr., 57, 821g (1962).
 G.R. Clemo and A.F. Daglish, J. Chem. Soc.,
- 11. G.R. Clemo and A.F. Daglish, J. Chem. Soc., 1481 (1950).
- 12. Y. Ahmad, M.S. Habib and Ziauddin, Tetrahedron, 20, 1107 (1964).
- 13. J.K. Landquist and G.J. Stacey, J. Chem. Soc., 2822 (1953).
- 14. J.K. Landquist, J. Chem. Soc., 2816 (1953).