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VISCOSITIES OF DILUTE POLYMER SOLUTIONS: SIGNIFICANCE OF THE MARK-
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Constants Km and a of the Mark-Houwink equation. [·~l=Km.Ma; are related to the polymer dimension in
solution. These two parameters. therefore. can be used to evalute the dimension of polymers. Two methods of
estimating the Flory K from values of Km'and a for polystyrene. polymerhylmethacrylate, bisphenol A polycarbonate
and amylose are verified. These methods of evaluation of I~ seem to apply for fiexible polymers and suggest that
K is independent of solvent power.

Of the parameters of dilute solution viscosities of
polymers, the one with any significance in terms
-of macro-molecular dimension is the intrinsic
viscosity denoted by ["1)J.. The relation between
["1)] and molecular weight M is given by the Mark-
Houwink equation,

where KIll and a are constants for'a given
polymer-solvent system. Equation I,' though
empirical, has similarity in form with the equation
-of Flory-Fox I deduced from the excluded volume
-consideration.s

[l)]=K.Mt.Cl3 (2)
where K=<II(;~/M)3f2 (3)

and ;-~ is the mean square end-to-end distance
-of the molecule in the unperturbed state, Cl, the
-extension factor representing expansion over the
unperturbed state and <II, the universal constant.
The intrinsic viscosity [.~] being dependent on
temperature! except in atherrnal solvents ; KIll
and a appear to vary with temperature.3 How-
-ever, this paper concerns with the relation of Km
.and a with the molecular dimension and hence
with K and not with their temperature coefficients.

Excluded volume treatment of Flory? predicts
that Clvaries with M °=1 in a solvent in which the
interaction between polymer and solvent is absent
and the exponent of M increases with increase in
solvent power reaching the maximum of MO' I.

["1)], therefore, in a very good solvent becomes
proportional to A1°' 8 whereas for cellulose deriva-
tives+ the exponent of M approaches unity.
Flory's relationship I represents a very clase ap-
proximation to the solution viscosities of flexible
polymers. The behaviour of cellulose derivatives
and stiff chain polymers in general can be ac-
counted for by the theory of Kurata et al.> which
makes an allowance far Cl becoming proportional
to. i\ll1f6 in a very good solvent. The Mark-
Hauwink equation empirically represents the
viscosity behaviour af both flexible and stiff chain

(I)

polymers in solutions. Values of a between 0..5
and 0..8 indicating approximately isotropic coil
expansion represent flexible p~lyrners ,and v~l~es
exceeding 0.8 suggest predominance of draining
effect. .

In absence of the· interaction qetween a polymer
and a salvent' the extension facto.r,,· Cl ;become$
unity and such a solvent repg;len tiiig'ix-:- I, is

. termed a theta solvent tor the "polymer in t.\1<?
system. In this condition of theta, equations
1 and 2 can be equated with the result

K Km (4)
and a=a. 5 (5)

With increase in the solvent power, the polymer-
solvent interaction comes into. consideration and
deviations from conditions given in equations 4
and 5 occur. Whatever be the magnitude of
deviation, it is apparent that KIll and a are related
to the molecular dimension, Vaek6 has suggested
the following relationship between a and Cl ,

a= (4Cl2-3) / (5Cl2-3) (6)

which does not suggest variation af a with solvent
and of Cl with molecular weight and, therefore,
is unreliable. However, it is possible to evaluate
K from KIll and a. It is also. evident that such
methods of determining K may not be applicable
to. stiff chain polymers+ which do not fulfil the
requirements of Flory's excluded volume treat-
ment and consequently of equation 2.

Determination of KIll and a are simple and made
from the graphical representation of equation I
in the logarithmic form.

logb]=log KIll+a log M (7)

Reasonably homogeneous fractions are needed
and the log-log plots of [.,,]against M as is evident
from equation 7 are linear (Fig. I). Km and a are
obtained from the intercept and the slope res-
pectively. Values of Km and a far polystyrene.v="
palymethylmethacrylate, 12-17 bisphenol A poly-
carbonate'f and amylase19,20 in different solvents
are given in Table I.
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Fig, I.-Plot oflog ['0] against log M for bisphcnol A poly-
carbonate in chloroform.
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TABLE r.,-VALUE OF Km AND a AT ,'2SoC.

Polymer Solvent x-. ,:,,105 <l
"

Polystyrene Chloroform 7:'J6 0.76
Benzene 9.52 0.74
Toluene JO.OO 0,72-
Ethylbenzene 17.60 0.68
Dichlorocthane 21.00 0.66
Methyetbyl ketone 39.00 0,58

Ref

7
8
9

JO
11
11

12
J3
14
J5
16
17

J8
J8
J8
J8
J8
18

Polymethyl-
methacrylate

. Chloroform 3.40
Benzene 6, 15
Nitromethane 5.70
Methylethyl ketone 7.10
Toluene 8.12
Ethylene dichloride: 17.00

0.83
0.76
0.74
0,72
0.71
0,68

0,82
0,18
0.78
0.71
0.67
0,62

Bisphenol A
polycarbonate

Cholroform 11.20
Methylene chloride 13.00
Ethylene chloride . 14.20

'Dioxane . : 30.90
Tetrahydrofuran 49.00. '
Cyclohexa',lone 77.60

Amylose
: ')'{

Aqueous
KOH (0.5M)'
Ethylene d~111}inc
Dimethyl hIi'f9!,ide

8,50
15.50
30.60

0,7t'l
0.70
0.64

19
20
19

',It follows.from the Table I that the greater the
value of a, the lower is ~he'value of Km. As a
is .related' 1?0 IX,: a should give the measure of solvent
power and such agreements .have also been re-
ported-" Kin increases with decrease in the solvent
po'wer and -in the limiting case of theta condition
Km becomes equal to K. It seems logical that
extrapolation of Kni in terms of the solvent power
would enable evaluation of K. .:".

Several relationships :!2,23 expressing K as
functions of Km and a have been proposed, the
simpler one is due to Kamide and Moore.V

-·log Krn+log ['2{(a-t)-I-'2}-I+r]
=(a-i) log Mo-logK (8)

where Mo is the geometric mean of the molecular
weight range to which Km and a refer. A plot
of the left-hand side of equation 8 against (a-i)
should be linear and K could be determined from
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Fig, 2,-Plo'ts: left-hand side of eq, 8 against (a-i),

the intercept. For nonpolar and not very polar
.polymers K is independent of solvents'< and,.
therefore, this method of estimation of K appears
reasonable. For stiff chain polymers, the 'solvent
dependence of K, the drairring effect and the non-
Gaussian nature., of polymer chains complicate
the procedure. Plots 'of the left-hand side of
equation 8 against (a-i) for polystyrene, .polyrne-
thylmethacrylate, bisphenol A polycarbonate and

.amylose are shown, in Fig. '2 and K values- cal-.
culated from the intercepts are given in Table '2.

Another method suggested by Barrales-Reinda
and Pepper'< needs plotting 'log Km against a'
for a number of solvents and K is obtained from
the ordinate at a . 0.5. Frorri ' equation 7 it
appears" reasonable that such ~ plot should .be·
linear and this method has been found to applyfo»
polyacenaphthalene.se Plots for polystyrene,
polymethylrnethacrylate, . bisphenol A polycar-
bonate and a:uylosSr are shown in Fig. :3 and K
values determined tRereby are included in:Table~'2
K values obtained from the methods=based on
equations 7 and 8 are in good 'ag'r~en{e~t-0ith the
val';l.es estimated from viscosity measurements in
theta'; solvents.8>I8-''I9>26, . These values are also
included in Table '2. ",-:'

Figures '2 and 3 show that the 'plots .except f-or
polymethylmethacrylate 'are straightforward. The
uncertainty in the case of polymethylmethacrylase
arises from the non-availability ..of results around
a=0.6'. ; However, polymers' considered" ~here
cover a good range of ploarity and, therefore,
both these methods could be said to be applicable
for estimation of K for flexible polymers. These
are simpler methods compared to the methods
based on Fixman type relationships.> 5>27,28 which
often need correction of uncertain magnitude for
different range of molecular weights.s? Further
Iimitation t? results from the inapplicability of
these treatments to lower molecular weights
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Fig. 3.-Plots, log Km against (a-!).

TABLE 2.-VALUES OF K FROM EQUATIONS 7 AND 8
AND FROM THETA SOLVENT.

Kx 104 from
Polymer rr: --,

Eq.7 Eg.8 Theta
solvent

Polystyrene 8.50 8.30 8.20
Polymethylmethacrylate 5.75 6.16 5.92
Bisphenol A polycarbonatc 22.90 22.90 21.40
Amylose 12.00 11.20 11.50

(M< 2 X 104) of polymers. Estimation of K from
-equations 7 and 8 seems to be free from these
-drawbacks, Moreover, these methods indicate
that K is independent of solvents and a similar
-conclusion has been reported for bisphenol A
polycarbonate. 18, 31
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