COMPARATIVE STUDIES OF PMR SPECTRA OF SOME DIHYDROPYRIDINES. PART III

A. KAMAL, TAHIRA BEGUM, M. AFROZE KHAN and ASAF A. QURESHI

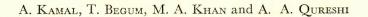
PCSIR Laboratories, Karachi 39

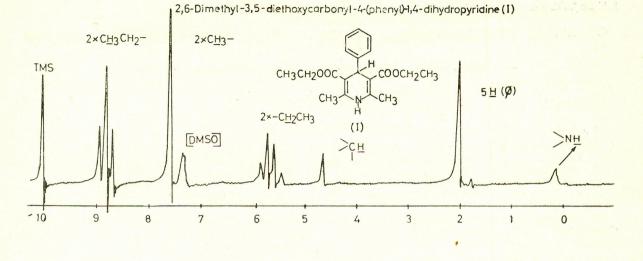
(Received November 13, 1970)

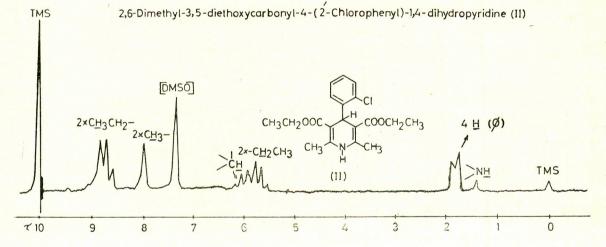
Comparative PMR studies of the 2,6-dimethyl-3,5-diethoxycarbonyl-4-(phenyl)-1,4-dihydropyridine (I), 2,6-dimethyl-3,5-diethoxycarbonyl-4-(2'-chlorophenyl) - 1,4 - dihydropyridine (II), 2,6-dimethyl-3,5-diethxy-carbonyl-4-(3'-hydroxyphenyl) - 1, 4-dihydropyridine (III), 2,6-dimethyl-3,5-diethoxycarbonyl-4-(4'-nitrophenyl) - 1,4-dihydropyridine (IV), 2,6-dimethyl-3, 5-diethoxy-carbonyl-4-(3',4'-dimethoxyphenyl)-1,4-dihydropyridine(V), 2,6-dimethyl-3, 5-diethoxycarbonyl-4-(a'-naphthyl) - 1,4-dihydropyridine (VI) are described.

In our previous communications we have described the PMR spectral studies of some isocoumarins^I, dihydropyridines and trithians.² In continuation of these studies we are describing PMR studies of some more dihydropyridines available to us.

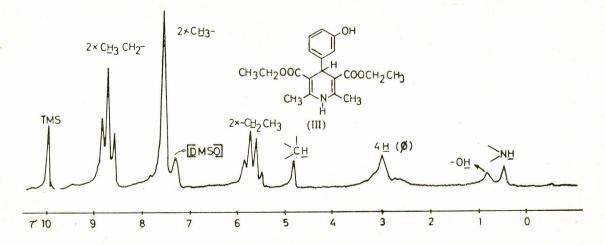
The PMR spectrum of 2-6,dimethyl-3, 5diethoxycarbonyl - 4 - phenyl - 1,4-dihydropyridine (I) showed a triplet and a quartet centred at $\tau 8.85$ (6H) and $\tau 5.6$ (4H) due to an A₂B₃ system of the ethyl groups of the two ester groups, substituted at positions 3 and 5 ($J_{A_2A_3} = 7$ Hz). The two *C*-methyl groups substituted at position 2 and 6 appeared as a sharp singlet at τ 7.6 (6H). Methine proton gave a single peak at $\tau 4.7$ (1H). The five phenyl protons being in identical environment gave a sharp peak centred at $\tau 2.1$ (5H). Finally, the NH proton appeared at $\tau 0.2$ (1H).

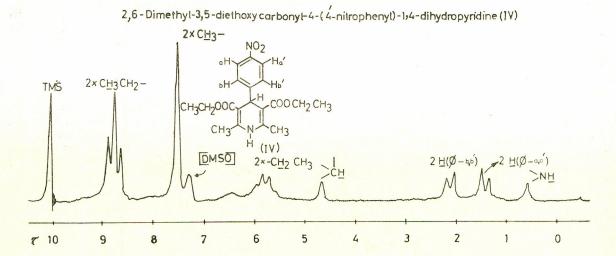

The PMR spectrum of 2,6-dimethyl-3,5diethoxycarbonyl-4-(2'-chlorophenyl),1,4-dihydropyridine (II) showed a triplet and a quartet centred at $\tau 8.75$ (6H) and $\tau 5.7$ (4H) due to A₂B₃ system of the ethyls of the two ester groups, substituted at 3 and 5 positions ($J_{A_2B_3} = 7$ Hz). The two *C*-methyl groups present at 2 and 6 positions appeared as a singlet at τ 7.6 (6H) due to identical environment. The methine proton at position 4 appeared as a singlet at τ 6.2 (1H). The four benzenoid protons appeared at τ 1.9 (4H). Finally, the NH proton appeared at $\tau 0.5$ (1H).


The PMR spectrum of 2, 6-dimethyl - 3, 5diethoxycarbonyl-4 - (3' - hydroxyphenyl) - 1, 4dihydropyridine (III) showed a triplet and a quartet centred at τ 8.7 (6H) and τ 5.7 (4H) respectively due to A₂B₃ system of the ethyl of two ester groups substituted at 3 and 5 positions ($J_{A_2B_3} = 7$ Hz). The two *C*-methyl groups present at 2 and 6 positions as a singlet at τ 7.6 (6H) due to identical environment. The methine proton at position 4 appeared as a singlet at τ 4.75 (1H). The four benzenoid protons appeared as a singlet at τ 3.0(4H). The OH proton appeared at τ 0.8 (1H). Finally, the NH proton appeared at τ 0.5 (1H).

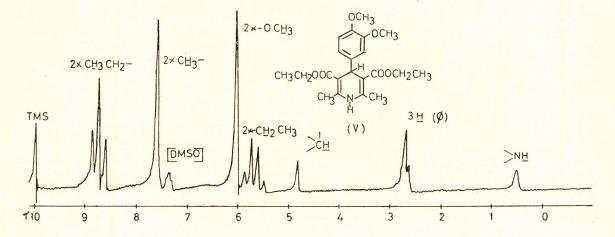

The PMR spectrum of 2,6-dimethyl-3,5diethoxycarbonyl-4- (4'-nitrophenyl)-1,4-dihydropyridine (IV) showed a triplet and a quartet centred at τ 8.75 (6H) and τ 5.8 (4H) respectively due to A₂B₃ system of the two ethyls of the two ester groups, substituted at positions 3 and 5. ($J_{A_2B_3} = 7$ Hz). The two C-methyl groups substituted at position 2 appeared as a sharp singlet at τ 7.55 (6H) due to identical environment. The methine proton at position 4 appeared as a singlet at τ 5.6 (1H). The four benzenoid protons appeared as two doublets centred at τ 2.12 (2H; *bb'*) and τ 1.38 (2H; *aa'*) showing *ortho* coupling (7 Hz). The *aa'* protons appeared at lower τ value due to the neighbouring NO₂ group. The proton of NH appeared at τ 0.5 (1H).

The PMR spectrum of 2,6-dimethyl -3,5diethoxycarbonyl-4-(3', 4'-dimethoxyphenyl) -1,4dihydropyridine (V) showed a triplet and a quartet centred at τ 8.75 (6H) and τ 5.7 (4H) due to A₂B₃ system of the ethyls of two ester groups, substituted at the 3 and 5 positions ($J_{A_2B_3} = 7Hz$). The two *C*-methyl groups present at 2 and 6 positions appeared as a singlet at τ 7.6 (6H) being in identical environment. The two —OCH₃ groups being in identical environment appeared as a sharp singlet at τ 6.05 (6H). The methine proton at position 4 appeared as a singlet at τ 4.82. The three benzenoid protons appeared as a doublet centred at τ 2.67 (3H) showing *meta* coupling (J=3 Hz). Finally, the NH proton appeared at τ 0.5. (1H).

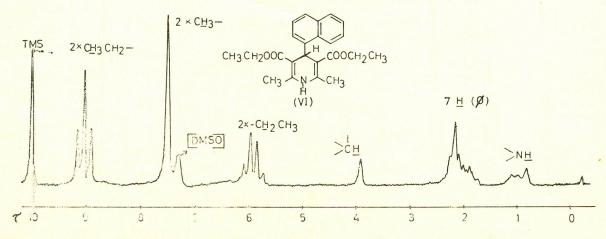

The PMR spectrum of 2,6-dimethyl-3,5diethoxycarbonyl-4-(α -naphthyl)-1,4-dihydropyridine (VI) showed a triplet and a quartet centred at τ 9.1 (6H) and τ 5.7 (4H) due to A₂B₃ system of the ethyls of the two ester groups, substituted at positions 3 and 5 ($J_{A_2B_3} = 7$ Hz). The two C-methyls substituted at positions 2 and 6 appeared as a sharp singlet at τ 7.52 (6H).



2,6-Dimethyl-3,5-diethoxycarbonyl-4-(3-hydroxyphenyl) -1,4-dihydropyridine (III)



12


PMR Spectra of Dihydropyridines. Part III

2,6-Dimethyl-3,5-diethoxycarbonyl-4-(3,4-dimethoxyphenyl)-1,4-dihydropyridine (V)

2,6-Dimethyl-3,5-diethoxy carbonyl-4- (-- naphthyl)-1,4-dihydropyridine (VI)

Methine proton gave a sharp peak at ± 3.9 (1H), this lower value is due to the presence of the neighbouring naphthyl group. The seven naphthyl protons appeared between $\pm 1.7 \sim \pm 2.4$ (7H). The proton of the >NH group gave a singlet at ± 0.8 (1H), thus accounting for all the protons in the molecule.

Experimental

All the compounds were run on DP-60 Varian Associates NMR machine in DMSO, using TMS as an internal standard. All the compounds were run in DMSO (d₆) due to their low solubility in other solvents. The concentration of the each compound was about 11-15%.

References

- A. Kamal, Nilofer Kazi, Tahira Begum, M. Afroze Khan and Asaf A. Qureshi, Pakistan J. Sci. Ind. Res., 14, 1 (1971).
- Pakistan J. Sci. Ind. Res., **14**, 1 (1971).
 A. Kamal, Rafia Akhtar, Tahira Begum, Asaf A. Qureshi and M. Afroze Khan, Pakistan J. Sci. Ind. Res., **14**, 6 (1971).