Pakistan J. Sci. Ind. Res., Vol. 13, Nos. 1-2, August 1970

SOLVENT-EFFECTS IN THE EPOXIDATION OF CYCLOHEXENE

S.A. KHAN and M. ASHRAF

P.C.S.I.R. Laboratories, Lahore 16

N.A. CHUGHTAI

Panjab University Institute of Chemistry, Lahore

(Received May 27, 1969; revised July 16, 1969)

Epoxidation of cyclohexene with peroxy and *p*-substituted peroxybenzoic acids has been studied kinetically in methanol at 30,° 40,° and 50°C($\pm 0.5^{\circ}$) and with peroxybenzoic acid in ethanol, acetone and n-propanol at 40°($\pm 0.5^{\circ}$). A ρ value of ± 1.30 has been calculated by the Hammett treatment. Energies of activation, entropies of activation and frequency factors have also been calculated. The differences in rate constants have not been found to be significantly dependent either on differences in energies or entropies of activation. However, the rate constants have been observed to be inversely proportional to the dielectric constants of the solvents employed. The addition of corresponding non-peroxybenzoic acids has been shown to cause no catalytic effects on the rate of this reaction.

Oxidation of cyclohexene to afford an epoxide has been known for a long time now.¹ This general reaction of the cyclic olefin with different oxidants has been the subject of various investigations.²⁻⁷ However, Medvedev and Blokh⁸ first reported the kinetics of the oxidation of cyclohexene using *p*-methoxy- and *p*-nitroperoxybenzoic acid in benzene and xylene. They found that in these aprotic solvents the oxidation is a bimolecular process. From these studies, the authors worked out various kinetic parameters and calculated a ρ value of +0.94. Later, Stuurman⁹ studied this oxidation with peracetic acid and also showed that this is a biomolecular reaction.

In connection with another study, it was desired to know the behaviour of polar solvents when olefins were oxidised with *p*-substituted peroxybenzoic acids. Since Medvedev and Blokh had determined the ρ value of this oxidation by using only two *p*-substituted peroxybenzoic acids, we decided to extend this work in polar solvents to employ more than two substituted peroxybenzoic acids. Thus, the present study describes the effects of polar solvents in the oxidation of cyclohexene with peroxy- and *p*-substituted peroxybenzoic acids (*p*-RC₆H₄O₃H where R=NO₂, Cl, CH₃ and OCH₃).

Results and Discussion

The rate constants for the oxidation of cyclohexene with peroxy- and four *p*-substituted peroxybenzoic acids were determined in methanol at 30° , 40° and 50° C ($\pm 0.5^{\circ}$) and with peroxybenzoic acid in ethanol, acetone and n-propanol at 40° C ($\pm 0.5^{\circ}$). In all these cases strict adherence to second order kinetics was noted. The rate constants obtained with varying concentration of cyclohexene and unsubsituted/p-substituted peroxybenzoic acids in the presence of corresponding acids, also, followed the same order of the reaction. The activation energies and physical factors were calculated from the Arrhenius plots shown in Fig. 1. The entropy of activation, ΔS_{\pm}^* , was determined from frequency factors,¹⁰ "A". The various physical constants as obtained in these studies are given in Table 1. It is obvious from the plot of E versus $T\Delta S_{\pm}^*$, depicted in Fig. 2, that there is a linear increase of ΔS_{\pm}^* with increasing activation energies. Generally the rate constants show their dependency on the difference of both energies and entropies of activation.¹¹⁻¹² However, in the present studies there appears no regular trend as regards this dependency.

Effect of Acids.—The addition of corresponding benzoic acids in the systems concerned did not show any catalytic effect on the rate of reaction. As a result of the addition of these acids only slight differences in rate constants were observed which fall within the limits of experimental errors (Tables 1 and 2). This confirms that respective acids, formed as products, do not catalyse the reaction.

Solvent Effect.—The nature of the solvent, generally affects the rate of reaction. In order to investigate this aspect, the epoxidation of cyclohexene with peroxybenzoic acid was carried out in methanol, ethanol, acetone and n-propanol (arranged in the ascending order of their dielectric constants).¹³ The rate constants obtained in these solvents at $40^{\circ}C \pm 0.5^{\circ}$ alongwith their dielectric constants are recorded in Table 2. A plot of rate constants versus the reciprocal of dielectric constants of the solvents employed gives a straight line as shown in Fig. 3. It is, therefore, apparent that the rate constants are inversely proportional

Solvent-Effects in the Epoxidation of Cyclohexene

						and the second se
Cyclohexene,	Parasid m mala/l	Temp.	k	E	In 4	$\Delta S^{\ddagger}_{\pm}$
m-mole/l	reracid, m-mole/1	°C	sec ⁻¹	mole ⁻¹	IIIA	cal mole ⁻¹
p-Nitroperoxyben	zoic Acid					-31.9
		1				
10.0	18.60	30°	0.072			2 m
5.0	9.00	,,	0.074		and the second s	
5.0	9.20+20.00(p-nitrobenzoic	acid) ,,	0.074	-		2A 101 2
10.0	18.75	40°	0.160	14.97	22.24	-13.76
5.0	9.20	,,,	0.164			× 11
5.0	0.10	50°	0.344			
2.5	5.30	,,	0.316			- las
p-Chloroperoxybe	nzoic Acid	an and				
10.0	10.70	00°	0.0105			
5.0	8 00	30	0.0125			
5.0	8.8	" 10 [°]	0.0123	14 50	10 67	-18 87
2.5	5.40	40	0.0250	14.30	19.07	10.07
2.5	4.00	"	0.0200			
10.0	18.00	50°	0.056			
5.0	10.00 ± 20.00	50	0.000	0"x + x"		
0005- 000	(p-chlorobenzoic acid)	Se ^D mondais	0.054			
2.5	5.00	diodahas	0.052			
		- Participant	Contained and a			
Peroxybenzoic act	id					
10.0	15.25	30°	0.0062			
5.0	7.15	,,	0.0060			A
2.5 00	3.50	······································	0.0064			and the subset of
10.0	18.45	40°	0.0130	15.99	21.50	-13.90
5.0	9.80	iom-m (?? nois	0.0140		Timber 1	
2.5	4.10	>>	0.0120		Including	
2.5	5.00+25.00 (benzoic acid)	"	0.0130			
10.0	19.00	50	0.030			
2.5	5.30	"	0.032			
2.3	5.20+20.00 (belizoie acid)	,, ,,	0.032			
p-Methylperoxyh	enzoic acid					
P minipiperenye						
5.0	8.75	30°	0.0037			
5.0	9.00+20.00 (<i>p</i> -toluic acid)		0.0036			
2.5	5.20 + 10.00 (<i>p</i> -toluic acid)	02.8	0.0036			
2.5	4.90	40°	0.0076			
2.5	5.00	50°	0.0160	13.98	17.40	-22.77
		09.81			5.18	loinnin
p-Methoxyperoxy	benzoic Acid					
5.0	10.65	30°	0.0025	14.00	17.23	-23.36
5.0	10.80+30.00 (p-anisic acid)	.,,	0.0024			level of the level
5.0	10.80	40°	0.0050		6C 1	
2.5000	5.20	· · · · · · · · · · · · · · · · · · ·	0.0050			
5.00.0	10.30	68 50°	0.0120			
6						en el contraction en la compañía de la contraction de la contraction de la contraction de la contraction de la

TABLE I.—Specific Rate Constants, Activation, Frequency Factors and Activation Enthropies for the Oxidation of Cyclohexene with Peracids in Methanol.

Fig. 1.—Arrhenius plots for peroxybenzoic acids oxidation of cyclohexene in methanol. Points obtained in the oxidation of cyclohexene with A=peroxybenzoic acid, B=p-nitroperoxybenzoic acid, C=p-chloroperoxybenzoic acid, D=p-methylperoxybenzoic and E=p-methoxyperoxybenzoic acid.

Fig. 2.—Plot E vs. $T \Delta S$ peroxybenzoic acids oxidation of cyclohexene in methanol at 30°C +0.5°.

C 1	Dielectric	Concentra	tion in m-moles/l	Rate of	Rate constants			
Solvent	constant	Cyclohexene	Peroxybenzoic acid	Benzoic acid	$k \mid \text{mole}^{-1} \operatorname{sec}^{-1}$			
n-Propanol		10.0	17.65 (bio ch	30 - 20,00 (hensi	0.026			
	20.1	5.0	8.40 8.00	20.0	0.024 0.024			
Acetone	20.7	10.0	16.80		0.022			
		5.0	8.50		0.020			
		2.5	5.00	10.0	0.022			
Ethanol	24.3	10.0	18.20		810.0			
		5.0	9.00		0.018			
20.00-		2.5	4.90	10.0	0.017			
Methanol	32.63	5.0	8.90		0.014			
		2.5	5.00		0.012			
		2.5	4.80	5.0	0.013			

T	ABLE 2.	SOLVENT	EFFECT IN	THE (OXIDATION	OF	CYCLOHEXENE WITH	PEROXYBENZOIC	ACID	AT .	40°	C.
-		O LI I LI LI L	TTTTTTTTTTTT	*****	CTTTTTTTTTTTTTT	~	CITOTTETTETTETTE	1 LICER A DECLORO				~

32

Fig. 3.—Plot of rate constants versus reciprocal of dielectric constants. Points obtained in the oxidation of cyclohexene with peroxybenzoic acid in, A=methanol, b=ethanol, C=acetone and D=n-proranol, at $40^{\circ} + 0.5^{\circ}$.

to the dielectric constants of the solvents. Therefore, the electrostatic interactions are more important than the nonelectrostatic ones. Incidently, the results obtained in these studies are in line with those obtained in the oxidation of sulphoxide to sulphone.¹⁴

Substituent Effect.—The effect of the substituents on the reactivity of the peroxybenzoic acids was considered with reference to σ and ρ values introduced by Hammett.¹⁵ The Hammett plot (Fig. 4) consisting of log k/k_o versus the substituent constant gives a straight line with a ρ value of +1.30. This is to be constrasted with a ρ value of +0.94 obtained by Medvedev and Blokh in the exposidation of cycloexene with only two p-substituted peroxybenzoic acids.⁸

p-Substituents generally have small influence upon the entropy of activation in the reactions of benzene derivatives.¹⁶ However, the present values of entropies of activation differ from one another in the range of -23.36 to -13.76. Moreover, the energies of activation in all these observations vary from 13.98 to 15.99 kcal/mole. The rate constants with p-chloro- and p-nitro-peroxybenzoic acids are approximately 2 and 12 times higher, while with p-methyl- and p-methoxyperoxybenzoic acids nearly 2.5 and 1.5 times lower than with unsubstituted peroxybenzoic acid.

It is to be pointed out that present results favour the mechanism put forward by Swern for the

oxidation of various substituted/unsubstituted olefins, which involves a nucleophilic attack of the double bond of an ethylenic system on the peroxyoxygen of the peroxybenzoic acid.¹⁷

Experimental

Absolute methanol, ethanol, acetone and npropanol used as solvents were purified according to standard procedures.

Peroxybenzoic acid and three p-substituted peroxybenzoic acids (-Cl, -CH₃ and -OCH₃) were obtained by Kolthoff, Lee and Mairs modifications¹⁸ of the Braun procedure¹⁹ from benzoyl peroxide and respective p, p'-disubstituted benzoyl peroxides, which in turn were prepared from the corresponding acid chlorides, whereas, p-nitroperoxybenzoic acid was prepared from p-nitrobenzoyl chloride by Michel Vilkas's method.20-These peroxybenzoic acids were prepared just before use in the kinetic runs, dissolved in the desired solvent and stored in a refrigerator (0°) . They were iodometrically standardised and the solutions of different concentrations were then prepared by dilution. Cycloxene, used in these studies, was of the B.D.H. standard. It was purified by fractional distillation and only the middle fraction was used in the kinetic studies.

Kinetic Measurements.—Solutions (50 ml) of each of the cyclohexene and *p*-substituted as well as unsubstituted peroxybenzoic acids in the desired solvent, were separately taken in two volumetric flasks. These flasks were kept at various constant temperatures provided by a thermostatically controlled bath. The cyclohexene and peroxybenzoic acids solutions were mixed together after they had attained the temperature of the bath. Aliquots (10 ml) from this reaction mixture were then pipetted out at convenient time intervals and the consumption of the peroxybenzoic acid by cyclohexene was followed iodometrically. Second order rate constants were calculated by the usual procedure.

Acknowledgement. The technical assistance of Mr. Nasir Ahmad is acknowledged with thanks.

References

- 1. R. Willstatter and E. Sonnenfield, Chem. Abstr., 9, 308 (1915).
- 2. H.N. Stephens, J. Am. Chem. Soc., 50, 568 (1928).
- 3. S.L. Reid and D.B. Sharp, Chem. Abstr., **64**, 15843 (1966).
- 4. E. J. Eisenbraun, A. R. Bader, J. W. Polacheck and E. Reif, J. Org. Chem., 28(8), 2057 (1963).
- 5. W.F. Brill, J. Am. Chem. Soc., 85, 141 (1963).

middle fraction was used in the kinetic studies.

- 6. J.C. Braunie and N. Crenne, Bull. Soc. Chem., p. 445 (July 15, 1966).
- 7. V.I. Papisova and G.B. Sergeev, Chem. Abstr., **64**, 9536b (1966).
- 8. S. Medvedev and O. Blokh, J. Phy. Chem. (U.S.S.R.), 4721 (1933).
- 9. J. Stuurman, Proc. Acad. Sci. (Amsterdam), 38, 450 (1935).
- S. Glasstone, K. J. Laidler and E. Eyring, *The Theory of Rate Processess* (McGraw-Hill, New York), p. 417.
- 11. E.G. Foster, A.C. Cope and F. Daniels, J. Am. Chem. Soc., **69**, 1893 (1947).
- 12. S.A. Khan, M. Ashraf, A.B. Chughtai and I. Ahmad, Pakistan J. Sci. Ind. Res., 10, 151 (1967).
- 13. A.A. Maryott and E.R. Smith, *Table of Dielectric Constants of Pure Liquids*, NBS circular 514 (U.S.A.), (1951).
- 14. S.A. Khan and M. Ashraf, Pakistan J. Sci. Ind. Res., **11**,105 (1968).
- 15. L.P. Hammett, *Physical Organic Chemistry* (McGraw-Hill, New York, 1940), p. 186.
- 16. Ibid., p. 121.
- 17. D. Swern, J. Am. Chem. Soc., **69**, 1692 (1947).
- 18. I.M. Kolthoff, T.S. Lee and M.A. Mairs, J. Polymer Sci., 2, 199 (1947).
- 19. G. Braun, Organic Syntheses, Col. Vol. 1 (J. Wiley, Chapman and Hall, 1956), p. 431.
- 20. M. Vilkas, Bull. Soc. Chem., 1401 (1959).

while considered with reference to a and values perioduced by Hammert.¹⁵ The Hammer plot (Fig. 4) consisting of log k/k, veryus the substituting constant gives a stranght line with a rolue of + 1, go. This is to be constanted with a resident in the exposidation of cyclocreme with only filekh in the exposidation of cyclocreme with only two j-culatituted permyberzole acids.

Additional generally have small influences there the entrony of activation in the mactions of benerics determined therein, the posent autors in the range of an in to -19, 20. More core, the rotagies of activation in all these direccore the rotagies of activation in all these direccore the rotagies of activation in all these direccore the rotagies of activation in all these directions sary from 12 04 to 15 quicked monling constants with P-chibries and 1-2 fouriers and a subserver hitting with towards activation of a firms herethen with towards activation of a directionsthen with towards activation of a directions-

It late is point dont that present reads firving the fire of the first part for the

34