Pakistan J. Sci. Ind. Res., 12, 334-336 (1970)

SPECTROSCOPIC STUDIES OF ORGANOPHOSPHORUS COMPOUNDS

Part V.—Ultraviolet Spectra of Phosphine-p-Benzoquinone Adducts

M. ARSHAD A. BEG and M.S. SIDDIQUI

P.C.S.I.R. Laboratories, Karachi 32

(Received February 17, 1969)

The UV spectra of phosphine-p-benzoquinone adducts have been studied under acid and basic conditions. The position of the bands is susceptible to changes in pH. In the acid medium there is a decrease in intensity of the $n \rightarrow \pi$ transition, as in ionized carboxyls while in the basic medium, there is a red shift with an enhancement in intensity, which is characteristic of phenols. In the phosphonium dithioformates also similar variations are noted. These observations suggest that the betaine structure is favoured in the acid medium while the phosphonemethylene structure is dominant in the basic medium.

The compounds obtained on the admixture of phosphines and p-quinones have almost the same features in the IR region of the spectra, i.e. the quinone carbonyl frequency shifts considerably to lower frequencies. However, there is also the evidence of a P=C bond required for a phosphinemethylene structure.^I The spectra in the visible and UV region also have typical features and it is found that the shifts occur with variation in the pH of the solution. This paper describes such variations and an attempt has been made here to interpret them in terms of their structure.

Like the IR, the characteristic features of the UV spectra of the quinones are well known² and it is possible to assign the band positions to the quinonoid or benzenoid absorptions. The spectrum of p-benzoquinone has three main maxima at (I) 240 mµ, (II) 280-320 mµ and (III) 420-500 $m\mu^2$ For monosubstituted quinones, band I is split into two and the position is shifted by about 10 mu; band II by 25mu and band III either does not appear or if it does so it is very weak with no change in position. These bands are, of diagnostic value and it is found that the maxima recorded here correspond to the substituted quinones extending the idea of Ramirez to phosphines in general, that they react with quinones having low oxidation potential by carbon attack.3

The substitution may give either a betaine or a phosphinemethylene. The latter would give an o-quinonoid effect in which case there would be a red shift by about 20 ma with a decrease in intensity from 4.2 to 3.3. On the other hand, a dipolar ionic structure demands the normal position for a trisubstituted aromatic ring. In the present case it is found that the positions are shifted and the intensity is also lowered.

Band I occurs in these compounds at 257 ± 3 m μ . Another band occurs at 265 ± 2 and a third at 272 ± 1 m μ . This band system is absent in the trimethylphosphine analogue and since the aryl-

phosphonium compounds have a similar band pattern it should be safely assigned to the $\pi \rightarrow \pi^*$ transition of the aromatic rings. Band II occurs at 320 mµ. While band III is located between 430 and 460 mµ. In the aromatic phosphines there is a tendency to shift this absorption to higher wavelengths. In most of the compounds, a weak IV band also occurs at 580 to 700 mµ.

The spectra of the present series of compounds have features similar to the other tautomeric mixtures like the pyridine carboxylic acids where the band position and intensity are dependent on the pH of the medium.⁴ Here it is observed that the spectra in the acid medium are similar to those of the neutral solutions and in the basic medium there is a considerable alteration in the shape and intensity of the bands.

Supposing that the phosphinemethylene structure is depicted by the neutral solution, the lower pH would have no effect on the phenolic —OH since the zwitterionic nature would be favoured by the acid medium and it will result in the ionization of the carbonyl group. The decrease in intensity in the case of pyridine carboxylic acids has been interpreted in terms of the removal of proton from the carboxyl group. Since we also observe a decrease in intensity of band III which is due to the $n \rightarrow \pi$ transition⁵ we can take it as an evidence of the formation of the betaine in the acidic media.

In the basic medium band II is totally absent and the absorption intensity is very much higher than in neutral solutions. The phenolic —OH ionizes in the basic medium and an increase in intensity with a red shift is characteristic of the spectra of the phenols, so that the spectra are those of the anion:

Spectroscopic Studies of Organophosphorus Compounds

Phosphine		Band I					Band II		Band III		
		Ph	osphine-	p-Benzo	quinone .	Adducts)			
Trimethyl phosphine	Νμ pH6ε	242 7500	256 4300		<u> </u>		320 5850		435 420	677 100	
	Αμ. pH2ε		260 800				312 7650		421 290	700 128	
	Β μ pH8ε		266 8280	273 7400	283 5700		x x		430 438	700 130	
Phenyl dime hyl phosphine	Ν μ pH6ε		256 3300	263 2400	271 2100		320 4860		460 350	580 140	
	Αμ pH2ε			265 5600	272 1650		317 5600		470 60	540 40	
	Β μ pH8ε		256 8350	263 7900	271 6960	286 4850	x x		450 360	470 240	480 200
Triphenyl phosphine	Ν μ pH 6 ε		260 5200	266 4930	272 1500		329 4650	360 2050	415 190	690 60	
	Α μ pH 2.5 ε		261	267 4000	273 3700		323 6000		400 70	705	
	B μ pH 8 ε			264 8800	267 8000			367 3100	430	700 50	
p-Tritolyl phosphine	Ν μ pH6ε		257 8500	264 7600	272 6850		320 6700		432 1627	455 1360	675 639
	Αμ pH3ε		257 7500	264 6500	273 5100		320 5300		430 824		675 288
	Βμ pH8ε				272 8150	290 6000	x x		430 1351		655 433
			р	-Benzoq	uinone						
	N μ pH6 s	239	242	285		310	355			425	445
	A μ pH2 ε	239 14500	242 14600	5150		310 700	355 63			425 33	445 28
	Β μ pH8 ε		255, 8850	272, 9400	298 5000	315 4000	357 113			420 59	525 14
				Hydroqu	inone						
	N μ pH6 ε	224 6780		291 3520			x x				x
	A μ pH 2 c	224		291			x				x
	pH2ε Bμ pH8ε	0800	240 8200	270 5050		300 2800	307 3000	315 2900	395 39	420 38	A
			Carbon	Disulph	ide Addi	ucts					
Trimethyl phosphine	Ν μ pH6 ε			1	273 633	297 1016	345 275	353 285			x x
	Α μ pH3ε			265 58	271 17			353 145			x x
	Β μ pH8 ε		258 810			299 810		353 200			x x
Phenyl dimethyl phosphine	Νμ pH6ε			263 2166	270 1767	285 700	310 433	353 18	370 17	380 15	x x
	$A \mu$ pH 3 ε	252 1000	257 1150	263 1157	269 800			x x			x x
	Β μ pH8ε	255 5966		263 5700	270 5467	295 3095			370 35		x x

TABLE I.—UV SPECTRA

A=acidic, B=basic, N=neutral

Since the spectra have been recorded in a polar medium it is natural to expect that the spectrum would be that of the dipolar form. The compounds being already in the dipolar form in the ground state a reorientation of the dipole moment would be favoured with a change in the media. This usually results in a blue shift as is observed from Table 1.

The 320 m μ band seems to be characteristic of the dipolar form. This appears in the phosphine– carbon disulfide adducts which have been shown to exist as the phosphonium dithioformates,⁶ and also in benzoyacetanilide where the band at 323 m μ has been assigned to the anion.⁷ The absence of this band possibly does indicate the favouring of the phosphinemethylene structure shown above.

Finally, a comparison of these spectra with that of the quinone and hydroquinone under similar set of conditions shows that in the basic medium the spectra of these compounds are quite similar but for the difference in intensity. However, in the neutral and acid media, differences are to be noted in that the intensity of the bands decreases by about 100 in the acidic medium, so that in p-benzoquinone also, the carboxyl group ionizes to a certain extent. This, however, is not the case in hydroquinone.

The spectra of quinone, hydroquinone and the phosphonium dithioformates serve to characterise the spectra of the phosphine-quinone adducts which are betaines in the methanol and acidic methanol solutions but are phosphinemethylenes in the basic medium.

Experimental

The compounds were prepared as described earlier.

The spectra were run on a Beckman DK-2 spectrophotometer using alcoholic solutions. The acid and basic media were obtained by adding a drop of hydrochloric acid or sodium hydroxide to the neutral solution. The pH of the solution so obtained was measured by means of a pH meter.

Acknowledgements.—Thanks are due to Mr. Syed Ismail for recording the spectra.

References

- M.A.A. Beg and M.S. Siddiqui, Tetrahedron, 22, 2203 (1966).
- 2. R.A. Morton, *Biochemistry of Quinones* (Academic Press, London, 1965), p. 23-65.
- 3. E.A.C. Lucken, F. Ramirez, V.P. Catto, D. Rhum and S. Dershowitz, Tetrahedron, 22, 637 (1966).
- 4. H.P. Stephenson and H. Sponer, J. Am. Chem. Soc., **79**, 2050 (1957).
- 5. J.W. Sidman, J. Am. Chem. Soc., **78**, 2363 (1956).
- 6. T.N. Margolis and D.M. Templeton, J. Chem. Phys., **36**, 2311 (1962).
- 7. C.A. Bishop and L.K. J. Tong, J. Phys. Chem., **66**, 1034 (1962).