STUDIES IN YIELD OF SEED COTTON AND ITS RELATION TO LEAF NUMBER IN HIGH GRADE COTTONS

ABDUL HAMEED KHAN, S.D. SHAH and MUHAMMAD NAGUIB

West Pakistan Agricultural University, Lyallpur

(Received June 5, 1967; revised June 1, 1968)

Regular studies in yield of seed cotton and its relationship with leaf number in high grade cottons were conducted at Lyallpur during the years 1962–63 and 1963–64. Selection for low leaf number was found to be well combined with high yield of seed cotton, as 40 families in the first year and 24 families in the second year surpassed L.S.S. the commercial variety of Lyallpur zone in this respect, the actual range being 76.4–127.1 g in 1962–63 and 82.9–129.5 in the second year as compared to 74.5 and 81.3 g for L.S.S. during the 2 years. Fourteen families in the first year and 21 families in the second year possessed the least foliage and high yield and showed clear indications of success in developing high grade cottons.

The improvement of yield and quality of cotton crop has received considerable attention from the cotton breeders in Pakistan and other countries during the last 65 years and tremendous allround progress has also been recorded in yield and various quality characters of the cotton crop in the former Panjab by Afzal¹ and Khan.²⁻⁵ The average yield of lint per acre has increased from 76.7 lb in the 1st decade of this century to 254 lb; ginning outturn of indigenous cotton (Gossypium arboreum L) has gone up from 33.0% to 40.5% and in Panjab American Cottons belonging to Gossypium hirsutum L) from 32.0% to 40.0%; staple length has increased from 0.70 in to 1.25 in and over; fibre fineness i.e., micronaire reading has moved down from 7.0 to 8.0, to 3.5 and to 4.0; fibre strength has increased from 60 to 70 thousand lb/ in² to 105 thousand/lb in new strains to 113 thousand lb/in² and spinning performance has recorded a spectacular increase from 8'S to over 70'S and strains capable of spinning 100'S are in hand.

It is, rather surprising, however that in spite of these achievements, no research work was at all undertaken for improvement of the grade of cotton crop of this area, which is the major factor in determining its price, utility in processing and manufacturing and the appearance of yarn and fabrics. The demand for higher grades in world markets has further added to its importance and it is a very serious problem in areas of labour shortage like U.S.A. where mechanical picking resulted in lowering of quality and grades and in cotton exporting countries, which must offer higher grade cotton to capture foreign markets.

The grade of cotton is composed of 3 factors; colour, foreign matter and ginning preparation, which are directly or indirectly affected appreciably by the variety, its extent of foliage at the picking time, size and type of burs and bracts etc. Considerable progress has already been made in chemical defoliation of cotton crop to obtain higher grades in foreign countries and Khan and Stroman⁶ studied effect of chemical defoliation on yield and quality of cotton.

Realizing the great complications and financial implications of chemical defoliation especially for less developed countries like Pakistan and the grave financial position of the poor cotton growers, the senior author started regular research work in 1960 for breeding of cotton varieties shedding leaves before first picking for obtaining higher grades of cotton, early crop, and less boll damage.

The findings of these researches have already been partly reported by Khan,³⁻⁴ and Khan⁷ and it is proposed to give further details of these researches and findings in this paper.

Review of Literature

Findings of researches on this aspect of the cotton crop are briefly reviewed here:

Ludwig⁸ stated that the artificial defoliation done early in the season resulted in loss of yield and weak lint.

Crowther⁹ observed that heavy defoliation in the months of October and November under Sudan conditions were associated with drastic reduction in yield.

Afzal¹⁰ stated that there was maximum shedding of leaves during August–September i.e., during third and fourth month after sowing. The leaves at the lower nodes were short lived and the age of the leaves increased at higher nodes and maximum age was recorded in the case of leaves at the top of the plant and the very top most leaves were again very short lived. Bailey¹¹ reported maximum shedding of leaves in Sudan during December and January i.e., from the fifth month after sowing. Joshi, *et al.*¹² stated that the longest lived leaves developed in the month of October. Gull and Dunnam¹³ stated that chemical defoliation resulted in early opening of bolls and it reduced the total green and dry leaf material collected by the picking machine. They further stated that defoliation resulted in early maturity of cotton by 2–3 weeks.

Sokolova¹⁴ stated that too early removal of the cotton leaves before mechanical harvesting of the crop resulted in marked reduction in yield.

• Hall¹⁵ stated that there was a high negative correlation between sensitivity to defoliation and the starch content of the leaves and that the susceptibility of a cotton field to chemical defoliation could be predicted fairly accurately by determining the percentage of starch in the leaves.

Hall and Lane¹⁶ stated that the percentage rate of abscission was higher when sugar was added to defoliant alone.

Afzal and Ali¹⁷ stated that on the whole defoliation of cotton plants had adverse affect on yield and quality. Khan and Stroman^{6,18} reported breeding of cotton varieties for higher grades and for those adaptable to mechanization.

Brown¹⁹ and Brown and Rhyne²⁰ stated that boll maturity determined the effectiveness of defoliation, as plants bearing bolls 38–60 days old were better defoliated than those with bolls 10–25 days old.

Khan and Stroman²¹ reported effectiveness of "Shell A" defoliant in remaining large number of leaves from the treated crop but it adversely affected yield and quality of cotton.

Khan and Mirza^{21,24} and Khan, Shah and Neguib²⁵ stated that researches for development of cotton varieties shedding leaves before picking were under way and that the breeding material and especially selections of Pak-111 were more outstanding in leaf shedding before pickings Their findings should have at Lyallpur. appreciable scope for evolution of high yielding varieties shedding leaves before picking and indicated that systematic research work was undertaken in 1962 by the senior author at Lyallpur and interesting results had been obtained during the year 1962-63, which have been partly reported by Khan, Khan and Neguib.25

Material and Methods

Regular studies for breeding of cotton varieties shedding leaves before picking, were undertaken in the year 1962 and continued for two years 1962-63 and 1963-64 in the Department of Genetics and Plant Breeding of the West Pakistan Agricultural University, Lyallpur. The experiment was arranged by the senior author in 1962 and 1963 and the former year included 48 families consisting of 26 selections of Pak-111 and 18 selections of Pak-8, AC-306, AC134, AC192, AC158, AC275, 320F, AC256, AC157 and AC301. This breeding material was selected on the thorough screening of the original collection and testing during the previous year 1961-62.

The details of the breeding material under study during the two years are given below:

DETAILS OF 1962-63 MATERIAL

(i) Number of progenies, 44; (ii) Standards (LSS, AC134, AC307 and Pak-111), 4; (iii) Total number of progenies, 48; (iv) Replications, 6; (v) Number of plants per repeat, 5; (vi) System of layout, Complete randomization; (vii) Range of yield, 49.0 to 149.5 g.; (viii) Range of ginning outturn, 30-40%; (ix) Range of staple length, 23.5-27.0 mm.; (x) Rainfall in Cotton season, 6.37"; (xi) Rotation, Cotton Berseen.

The entire material was thoroughly studied in the field and laboratory for yield and other characters including the number of leaves on plants and the percentage shedding in different families. 44 families were finally selected from the 1962-63 material on basis of yield, ginning outturn, staple length and leaf shedding quality, for further studies during the year 1963-64.

DETAILS OF 1963-64 MATERIAL

(i) Number of progenies, 44: (ii) Standards (L.S.S., AC134, AC307 and Pak-111), 4; (iii) Total number of progenies, 48; (iv) Replications, 6; (v) Number of plants per repeat, 5; (vi) System of layout, Complete randomization; (vii) Range of yield, 91.7 to 325.0 g.; (viii) Range of ginning outturn. 33.2 to 43.4; (ix) Range of staple, 21.5 to 24.5 mm.; (x) Rotation, Cotton Bureau, Cotton.

Yield.—Three picks were taken at regular intervals during the season. The produce of each pick was separately collected in bags and weighed in the end of the season. The total yield was obtained by sunning up yield of different picks.

The Number of Leaves.—The number of leaves was counted before first picking. The leaves of each plant of all the families were counted individually and the average of the family was determined.

Percentage of Foilage on First Picking.—The total number of leaves was counted before first picking and then recounting was done at the time of first picking. The percentage of leaves at the first picking to the original total, was found out by the following formula.

 $\frac{\text{Percentage}}{\text{of foliage}} = \frac{\text{Leaves present at first pick}}{\text{Total number of leaves}} \times 100$

Statistical Method Applied.—The entire data for yield of seed cotton was subjected to statistical analysis according to methods suggested by Goulden (1936)²⁷ and Fisher²⁸ (1941).

Experimental Results

The yield results obtained from the present studies are presented in Tables I-4.

It will be seen from data given in Table 1 that the range of yield of different families during the first year of experiments *i.e.*, 1962–63 was 53.6 to 127.1 g, and the yield of L.S.S., AC134, AC307 and Pak-111 standards was 72.1, 84.2, 104.6 and 87.9 g per plant respectively. It will be further seen that 40 families outyielded L.S.S. whereas 34, 13 and 30 families surpassed AC134, AC307 and Pak-111 standards in yield per plant respectively. The statistical analysis, however showed non-significant differences between various families and the standards, inspite of appreciable actual differences between yields of different families and standards. Selections of AC306, 320F, Pak-111, AC256 and AC192 and Pak-8 were outstanding in yield per plant, although the differences in yield were nonsignificant, but the trends were decidedly clear.

The range of yield of seed cotton for different families for the 2nd year given in Table 3 was 49.7 to 129.5 g and the average yield for standards L.S.S., AC134, AC307 and Pak-111 was 81.3, 71.2, 122.0 and 82.9 g respectively. Twenty four families outyielded L.S.S. the commercial variety of Lyallpur zone, whereas 36, 1 and 23 families surpassed AC134, AC307 and Pak-111 respectively. The yield differences between families were significant. No family showed significantly higher yields than AC307, but only 4, 10 and 3 families showed significant differences over L.S.S., AC134 and Pak-111.

TABLE I.—ADJUSTED YIELD OF DIFFERENT FAMILIES FOR THE YEAR 1962–63.

S. No.FamilyOriginYield (g)I.1139-62AC306127.12.1147-62320F124.73.1123-62Pak-111121.04.1148-62AC256115.15.1118-62Pak-111114.86.1114-62Pak-111112.57.1143-62AC192110.08.1150-62AC256108.49.1136-62Pak-111107.710.1125-62Pak-111105.212.1132-62Pak-111105.214.AC-307Standard104.615.1142-62AC192101.716.1121-62Pak-11199.418.1140-62AC30698.120.1120-62Pak-11197.921.1129-62Pak-11197.822.1137-62Pak-11197.823.1136-62AC30698.120.1120-62Pak-11197.822.1137-62Pak-11197.823.1136-62Pak-11197.824.1135-62Pak-11196.926.1134-62Pak-11196.926.1134-62Pak-11192.727.1141-62AC13492.128.1131-62Pak-11191.829.116-62Pak-11197.931.Pak-111Standard87.933.1133-62Pak-11185.9				52 03.
2. $1147-62$ $320F$ 124.7 3. $1123-62$ $Pak-111$ 121.0 4. $1148-62$ $AC256$ 115.1 5. $1118-62$ $Pak-111$ 114.8 6. $1114-62$ $Pak-111$ 112.5 7. $1143-62$ $AC192$ 110.0 8. $1150-62$ $AC256$ 108.4 9. $1136-62$ $Pak-8$ 107.9 10. $1125-62$ $Pak-111$ 107.7 11. $1115-62$ $Pak-111$ 105.2 12. $1132-62$ $Pak-111$ 105.2 14. $AC-307$ $Standard$ 104.6 15. $1142-62$ $AC192$ 101.7 16. $1121-62$ $Pak-111$ 91.3 17. $1127-62$ $Pak-111$ 97.9 21. $1120-62$ $Pak-111$ 97.8 22. $1137-62$ $Pak-111$ 97.8 23. $113-62$ $Pak-111$ 97.3 25. $1122-62$ $Pak-111$ 97.3 25. $1122-62$ $Pak-111$ 97.3 25. $1122-62$ $Pak-111$ 97.3 25. $1122-62$ $Pak-111$ 92.7 27. $1141-62$ $AC134$ 92.1 28. $1131-62$ $Pak-111$ 91.8 29. $116-62$ $Pak-111$ 92.7 27. $1144-62$ $AC134$ 92.7 28. $1131-62$ $Pak-111$ 91.8 29. $116-62$ $Pak-111$ 92.7 21. $1134-62$ <t< td=""><td>S. No.</td><td>Family</td><td>Origin</td><td>Yield (g)</td></t<>	S. No.	Family	Origin	Yield (g)
3.1123-62Pak-111121.04.1148-62AC256115.15.1118-62Pak-111114.86.1114-62Pak-111112.57.1143-62AC192110.08.1150-62AC256108.49.1136-62Pak-8107.910.1125-62Pak-111105.211.1115-62Pak-111105.212.1132-62Pak-111105.214.AC-307Standard104.615.1142-62AC192101.716.1121-62Pak-11199.418.1140-62AC30698.120.1120-62Pak-11197.821.1129-62Pak-11197.822.1137-62Pak-11197.323.1113-62Pak-11197.324.1135-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11197.426.133-62Pak-11197.930.1124-62AC13492.128.1131-62Pak-11189.933.1133-62Pak-11189.9<	Ι.	1139–62	AC306	127.1
3.1123-62Pak-111121.04.1148-62AC256115.15.1118-62Pak-111114.86.1114-62Pak-111112.57.1143-62AC192110.08.1150-62AC256108.49.1136-62Pak-8107.910.1125-62Pak-111105.211.1115-62Pak-111105.212.1132-62Pak-111105.214.AC-307Standard104.615.1142-62AC192101.716.1121-62Pak-11199.418.1140-62AC30698.120.1120-62Pak-11197.821.1129-62Pak-11197.822.1137-62Pak-11197.323.1113-62Pak-11197.324.1135-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11197.426.133-62Pak-11197.930.1124-62AC13492.128.1131-62Pak-11189.933.1133-62Pak-11189.9<	2.	1147–62	320F	124.7
4. $1148-62$ AC256 115.1 5. $1118-62$ Pak-111 114.8 6. $1114-62$ Pak-111 112.5 7. $1143-62$ AC192 110.0 8. $1150-62$ AC256 108.4 9. $1136-62$ Pak-8 107.9 10. $1125-62$ Pak-111 107.7 11. $1115-62$ Pak-111 105.2 12. $1132-62$ Pak-111 105.2 14.AC-307Standard 104.6 15. $1142-62$ AC192 101.7 16. $1121-62$ Pak-111 101.3 17. $1127-62$ Pak-111 99.4 18. $1140-62$ AC306 98.1 20. $1120-62$ Pak-111 97.9 21. $1129-62$ Pak-111 97.8 22. $1137-62$ Pak-111 97.8 23. $1113-62$ Pak-111 97.3 25. $1122-62$ Pak-111 97.3 25. $1122-62$ Pak-111 97.3 25. $1122-62$ Pak-111 97.3 25. $1122-62$ Pak-111 92.7 27. $1141-62$ AC134 92.1 28. $1131-62$ Pak-111 97.3 25. $1122-62$ Pak-111 92.7 27. $144-62$ AC134 92.1 28. $113-62$ Pak-111 92.7 27. $1144-62$ AC134 92.1 28. $113-62$ Pak-111 89.3 31.Pak-	3.		Pak-111	
5.1118-62Pak-111114.86.1114-62Pak-111112.57.1143-62AC192110.08.1150-62AC256108.49.1136-62Pak-8107.910.1125-62Pak-111107.711.1115-62Pak-111107.711.1115-62Pak-111105.813.1130-62Pak-111105.214.AC-307Standard104.615.1142-62AC192101.716.1121-62Pak-11199.418.1140-62AC3498.619.1138-62AC30698.120.1120-62Pak-11197.921.1129-62Pak-11197.822.1137-62Pak-897.823.1113-62Pak-11197.624.1135-62Pak-11197.325.1122-62Pak-11197.820.1124-62Pak-11197.325.1122-62Pak-11197.926.1134-62Pak-11197.927.1141-62AC13492.128.1131-62Pak-11197.939.1124-62Pak-11197.931.Pak-111Standard87.932.1144-62AC15886.333.1133-62Pak-11189.934.1153-62AC30185.435.AC134Standard84.2 <t< td=""><td></td><td>1148-62</td><td>AC256</td><td></td></t<>		1148-62	AC256	
6.1114-62Pak-111112.57.1143-62AC192110.08.1150-62AC256108.49.1136-62Pak-8107.910.1125-62Pak-111107.711.1115-62Pak-111105.212.1132-62Pak-111105.214.AC-307Standard104.615.1142-62AC192101.716.1121-62Pak-111101.317.1127-62Pak-11199.418.1140-62AC13498.619.1138-62AC30698.120.1120-62Pak-11197.921.1129-62Pak-11197.822.1137-62Pak-897.823.1113-62Pak-11197.624.1135-62Pak-11197.725.1122-62Pak-11197.825.1122-62Pak-11197.926.1134-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11196.926.1134-62Pak-11189.930.1124-62Pak-11189.331.Pak-111Standard87.932.1144-62AC15886.333.1133-62Pak-11185.934.1153-62AC30185.435.AC134Standard84.236.1146-62320F82.5 <t< td=""><td></td><td></td><td></td><td></td></t<>				
7.1143-62AC192110.08.1150-62AC256108.49.1136-62Pak-8107.910.1125-62Pak-111107.711.1115-62Pak-111106.212.1132-62Pak-111105.813.1130-62Pak-111105.214.AC-307Standard104.615.1142-62AC192101.716.1121-62Pak-111101.317.1127-62Pak-11199.418.1140-62AC13498.619.1138-62AC30698.120.1120-62Pak-11197.921.1129-62Pak-11197.822.1137-62Pak-897.823.1113-62Pak-11197.324.1135-62Pak-11197.325.1122-62Pak-11192.727.1141-62AC13492.128.113-62Pak-11191.829.116-62Pak-11191.829.116-62Pak-11189.931.Pak-111Standard87.932.1144-62AC15886.333.1133-62Pak-11189.934.1153-62AC30185.435.AC134Standard84.236.1146-62320F82.537.119-62Pak-11181.539.113-62Pak-11181.539.<	6.	1114-62	Pak-111	
8.1150-62AC256108.49.1136-62Pak-8107.910.1125-62Pak-111107.711.1115-62Pak-111106.212.1132-62Pak-111105.813.1130-62Pak-111105.214.AC-307Standard104.615.1142-62AC192101.716.1121-62Pak-11199.418.1140-62AC36698.120.1120-62Pak-11197.921.1129-62Pak-11197.822.1137-62Pak-11197.323.1113-62Pak-11197.324.1135-62Pak-11197.325.1122-62Pak-11197.926.1134-62Pak-11192.727.1141-62AC13492.128.113-62Pak-11191.829.116-62Pak-11197.931.Pak-111Standard87.932.1144-62AC13492.133.133-62Pak-11189.333.133-62Pak-11189.934.1153-62AC30185.435.AC134Standard84.236.1146-62320F82.537.119-62Pak-11179.940.1126-62Pak-11179.940.1126-62Pak-11179.940.1126-62Pak-11170.4 <td< td=""><td>7.</td><td></td><td>AC192</td><td></td></td<>	7.		AC192	
9.1136-62Pak-8107.910.1125-62Pak-111107.711.1115-62Pak-111106.212.1132-62Pak-111105.813.1130-62Pak-111105.214.AC-307Standard104.615.1142-62AC192101.716.1121-62Pak-111101.317.1127-62Pak-11199.418.1140-62AC30698.120.1120-62Pak-11197.921.1129-62Pak-11197.822.1137-62Pak-11197.624.1135-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11191.829.116-62Pak-11191.829.116-62Pak-11189.930.1124-62Pak-11189.331.Pak-111Standard87.932.1144-62AC30185.433.1133-62Pak-11189.934.1153-62Pak-11182.235.AC134Standard84.236.1146-62320F82.537.119-62Pak-11179.940.1126-62Pak-11170.441.L.S.S.Standard74.542.1117-62Pak-11172.143.1151-62Pak-11172.144.1152-62Pak-11170.2 <td></td> <td></td> <td></td> <td></td>				
10.1125-62Pak-111107.711.1115-62Pak-111106.212.1132-62Pak-111105.813.1130-62Pak-111105.214.AC-307Standard104.615.1142-62AC192101.716.1121-62Pak-111101.317.1127-62Pak-11199.418.1140-62AC30698.120.1120-62Pak-11197.921.1129-62Pak-11197.822.1137-62Pak-11197.623.113-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11196.926.1134-62Pak-11197.325.1122-62Pak-11191.829.116-62Pak-11199.930.1124-62Pak-11189.931.Pak-111Standard87.932.144-62AC15886.333.1133-62Pak-11189.934.1153-62Pak-11182.235.AC134Standard84.236.1146-62320F82.537.119-62Pak-11170.940.1126-62Pak-11170.940.1126-62Pak-11170.441.L.S.S.Standard74.542.1117-62Pak-11172.143.1151-62AC15772.1 <td>9.</td> <td></td> <td>Pak-8</td> <td></td>	9.		Pak-8	
11.1115-62Pak-111106.212.1132-62Pak-111105.813.1130-62Pak-111105.214.AC-307Standard104.615.1142-62AC192101.716.1121-62Pak-111101.317.1127-62Pak-11199.418.1140-62AC13498.619.1138-62AC30698.120.1120-62Pak-11197.921.1129-62Pak-11197.622.1137-62Pak-897.823.1113-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11192.727.1141-62AC13492.128.1131-62Pak-11191.829.116-62Pak-11189.930.1124-62Pak-11189.331.Pak-111Standard87.932.1144-62AC15886.333.1133-62Pak-11134.1153-62AC30135.AC134Standard36.1146-62320F37.119-62Pak-11138.1110.62Pak-11139.113-62Pak-11139.113-62Pak-11131.Pab-62Pak-11134.115-62AC15739.113-62Pak-11141.L.S.S.Standard42.117-62		1125-62	Pak-111	
13.1130-62Pak-111105.214.AC-307Standard104.615.1142-62AC192101.716.1121-62Pak-111101.317.1127-62Pak-11199.418.1140-62AC30698.120.1120-62Pak-11197.921.1129-62Pak-11197.822.1137-62Pak-397.823.1113-62Pak-11197.324.1135-62Pak-11197.325.1122-62Pak-11192.727.1141-62AC13492.128.1131-62Pak-11191.829.1116-62Pak-11189.930.1124-62Pak-11189.331.Pak-111Standard87.932.1144-62AC15886.333.1133-62Pak-11185.934.1153-62AC30185.435.AC134Standard84.236.1146-62320F82.537.119-62Pak-11181.539.113-62Pak-11179.940.1126-62Pak-11170.441.L.S.S.Standard74.542.1117-62Pak-11172.143.1151-62AC15772.144.152-62Pak-11170.246.1111-62Pak-11167.1	11.	1115-62	Pak-111	
13.1130-62Pak-111105.214.AC-307Standard104.615.1142-62AC192101.716.1121-62Pak-111101.317.1127-62Pak-11199.418.1140-62AC13498.619.1138-62AC30698.120.1120-62Pak-11197.921.1129-62Pak-11197.822.1137-62Pak-897.823.1113-62Pak-11197.325.1122-62Pak-11197.325.1122-62Pak-11192.727.1141-62AC13492.128.1131-62Pak-11191.829.116-62Pak-11199.930.1124-62Pak-11189.931.Pak-111Standard87.932.1144-62AC15886.333.1133-62Pak-11185.934.1153-62AC30185.435.AC134Standard84.236.1146-62320F82.537.1119-62Pak-11179.940.1126-62Pak-11179.940.1126-62Pak-11170.441.L.S.S.Standard74.542.1117-62Pak-11170.244.1152-62AC15772.145.1128-62Pak-11170.246.1111-62Pak-11167.1 <td>12.</td> <td>1132-62</td> <td>Pak-111</td> <td>105.8</td>	12.	1132-62	Pak-111	105.8
14.AC-307Standard 104.6 15. $1142-62$ AC192 101.7 16. $1121-62$ Pak-111 101.3 17. $1127-62$ Pak-111 99.4 18. $1140-62$ AC134 98.6 19. $1138-62$ AC306 98.1 20. $1120-62$ Pak-111 97.9 21. $1129-62$ Pak-111 97.9 22. $1137-62$ Pak-8 97.8 23. $1113-62$ Pak-111 97.3 25. $1122-62$ Pak-111 97.3 25. $1122-62$ Pak-111 92.7 27. $1141-62$ AC134 92.1 28. $1131-62$ Pak-111 91.8 29. $116-62$ Pak-111 99.9 30. $1124-62$ Pak-111 89.9 31.Pak-111Standard 87.9 32. $1144-62$ AC158 86.3 33. $1133-62$ Pak-111 85.9 34. $1153-62$ AC301 85.4 35.AC134Standard 84.2 36. $1146-62$ $320F$ 82.5 37. $119-62$ Pak-111 81.5 39. $113-62$ Pak-111 79.9 40. $1126-62$ Pak-111 70.9 41.L.S.S.Standard 74.5 42. $117-62$ Pak-111 72.1 43. $1151-62$ AC157 72.1 44. $152-62$ Pak-111 70.2 46. $1111-62$	13.	1130-62	Pak-111	
15. $1142-62$ AC192 101.7 16. $1121-62$ Pak-111 101.3 17. $1127-62$ Pak-111 99.4 18. $1140-62$ AC134 98.6 19. $1138-62$ AC306 98.1 20. $1120-62$ Pak-111 97.9 21. $1129-62$ Pak-111 97.8 22. $1137-62$ Pak-8 97.8 23. $1113-62$ Pak-111 97.6 24. $1135-62$ Pak-111 97.3 25. $1122-62$ Pak-111 92.7 27. $1141-62$ AC134 92.1 28. $1131-62$ Pak-111 91.8 29. $116-62$ Pak-111 89.9 30. $1124-62$ Pak-111 89.3 31.Pak-111Standard 87.9 32. $1144-62$ AC158 86.3 33. $1133-62$ Pak-111 85.9 34. $1153-62$ AC301 85.4 35.AC134Standard 84.2 36. $1146-62$ $320F$ 82.5 37. $119-62$ Pak-111 81.5 39. $113-62$ Pak-111 79.9 40. $1126-62$ Pak-111 70.9 40. $1126-62$ Pak-111 70.2 44. $152-62$ AC157 72.1 45. $1128-62$ Pak-111 70.2 46. $111-62$ Pak-111 67.1				104.6
16. $1121-62$ $Pak-111$ 101.3 $17.$ $1127-62$ $Pak-111$ 99.4 $18.$ $1140-62$ $AC134$ 98.6 $19.$ $1138-62$ $AC306$ 98.1 $20.$ $1120-62$ $Pak-111$ 97.9 $21.$ $1129-62$ $Pak-111$ 97.9 $22.$ $1137-62$ $Pak-8$ 97.8 $23.$ $1113-62$ $Pak-111$ 97.6 $24.$ $1135-62$ $Pak-111$ 97.3 $25.$ $1122-62$ $Pak-111$ 92.7 $27.$ $1141-62$ $AC134$ 92.1 $28.$ $1131-62$ $Pak-111$ 91.8 $29.$ $116-62$ $Pak-111$ 89.9 $30.$ $1124-62$ $Pak-111$ 89.3 $31.$ $Pak-111$ $Standard$ 87.9 $32.$ $1144-62$ $AC158$ 86.3 $33.$ $1133-62$ $Pak-111$ 85.9 $34.$ $1153-62$ $AC301$ 85.4 $35.$ $AC134$ $Standard$ 84.2 $36.$ $1146-62$ $320F$ 82.5 $37.$ $119-62$ $Pak-111$ 81.5 $39.$ $113-62$ $Pak-111$ 79.9 $40.$ $1126-62$ $Pak-111$ 70.9 $40.$ $1126-62$ $Pak-111$ 72.1 $43.$ $1151-62$ $AC157$ 72.1 $44.$ $152-62$ $AC157$ 72.1 $44.$ $152-62$ $AC157$ 72.1 $45.$ $1128-62$ $Pak-111$ 70.2		1142-62	AC192	
18. $1140-62$ $AC134$ 98.6 $19.$ $1138-62$ $AC306$ 98.1 $20.$ $1120-62$ $Pak-111$ 97.9 $21.$ $1129-62$ $Pak-111$ 97.8 $22.$ $1137-62$ $Pak-8$ 97.8 $23.$ $1113-62$ $Pak-111$ 97.6 $24.$ $1135-62$ $Pak-111$ 97.3 $25.$ $1122-62$ $Pak-111$ 96.9 $26.$ $1134-62$ $Pak-111$ 92.7 $27.$ $1141-62$ $AC134$ 92.1 $28.$ $1131-62$ $Pak-111$ 99.9 $30.$ $1124-62$ $Pak-111$ 89.9 $30.$ $1124-62$ $Pak-111$ 89.3 $31.$ $Pak-111$ $Standard$ 87.9 $32.$ $1144-62$ $AC158$ 86.3 $33.$ $1133-62$ $Pak-111$ 85.9 $34.$ $1153-62$ $AC301$ 85.4 $35.$ $AC134$ $Standard$ 84.2 $36.$ $1146-62$ $320F$ 82.5 $37.$ $119-62$ $Pak-111$ 81.5 $39.$ $113-62$ $Pak-111$ 79.9 $40.$ $1126-62$ $Pak-111$ 70.9 $40.$ $1126-62$ $Pak-111$ 74.5 $42.$ $117-62$ $Pak-111$ 70.2 $44.$ $152-62$ $AC157$ 72.1 $44.$ $152-62$ $AC157$ 72.1 $45.$ $1128-62$ $Pak-111$ 70.2 $46.$ $1111-62$ $Pak-111$ 67.1		1121-62	Pak-111	101.3
19. $1138-62$ AC306 98.1 20. $1120-62$ Pak-111 97.9 21. $1129-62$ Pak-111 97.8 22. $1137-62$ Pak-8 97.8 23. $1113-62$ Pak-111 97.6 24. $1135-62$ Pak-111 97.3 25. $1122-62$ Pak-111 96.9 26. $1134-62$ Pak-111 92.7 27. $1141-62$ AC134 92.1 28. $1131-62$ Pak-111 91.8 29. $116-62$ Pak-111 89.9 30. $1124-62$ Pak-111 89.3 31.Pak-111Standard 87.9 32. $1144-62$ AC158 86.3 33. $1133-62$ Pak-111 85.9 34. $1153-62$ AC301 85.4 35.AC134Standard 84.2 36. $1146-62$ $320F$ 82.5 37. $119-62$ Pak-111 79.9 40. $1126-62$ Pak-111 79.9 40. $1126-62$ Pak-111 76.4 41.L.S.S.Standard 74.5 42. $1117-62$ Pak-111 72.1 43. $1151-62$ AC157 72.1 44. $1152-62$ AC157 72.1 45. $1128-62$ Pak-111 70.2 46. $111-62$ Pak-111 67.1	17.	1127-62		99.4
20. $1120-62$ Pak-11197.921. $1129-62$ Pak-11197.822. $1137-62$ Pak-897.823. $1113-62$ Pak-11197.624. $1135-62$ Pak-11197.325. $1122-62$ Pak-11196.926. $1134-62$ Pak-11192.727. $1141-62$ AC13492.128. $1131-62$ Pak-11191.829. $116-62$ Pak-11189.930. $1124-62$ Pak-11189.331.Pak-111Standard87.932. $1144-62$ AC15886.333. $1133-62$ Pak-11185.934. $1153-62$ AC30185.435.AC134Standard84.236. $1146-62$ $320F$ 82.537. $119-62$ Pak-11179.940. $1126-62$ Pak-11179.940. $1126-62$ Pak-11174.541.L.S.S.Standard74.542. $117-62$ Pak-11172.143. $1151-62$ AC15772.144. $1152-62$ AC15772.145. $1128-62$ Pak-11170.246. $111-62$ Pak-11167.1	18.	1140-62		98.6
21. $1129-62$ $Pak-111$ 97.8 22. $1137-62$ $Pak-8$ 97.8 23. $1113-62$ $Pak-111$ 97.6 24. $1135-62$ $Pak-111$ 97.3 25. $1122-62$ $Pak-111$ 96.9 26. $1134-62$ $Pak-111$ 92.7 27. $1141-62$ $AC134$ 92.1 28. $1131-62$ $Pak-111$ 91.8 29. $1116-62$ $Pak-111$ 89.9 30. $1124-62$ $Pak-111$ 89.3 31. $Pak-111$ $Standard$ 87.9 32. $1144-62$ $AC158$ 86.3 33. $1133-62$ $Pak-111$ 85.9 34. $1153-62$ $AC301$ 85.4 35. $AC134$ $Standard$ 84.2 36. $1146-62$ $320F$ 82.5 37. $119-62$ $Pak-111$ 81.5 39. $113-62$ $Pak-111$ 79.9 40. $1126-62$ $Pak-111$ 74.5 41.L.S.S. $Standard$ 74.5 42. $117-62$ $Pak-111$ 72.1 43. $1151-62$ $AC157$ 72.1 44. $1152-62$ $AC157$ 72.1 45. $1128-62$ $Pak-111$ 70.2 46. $111-62$ $Pak-111$ 67.1	19.	1138-62	AC306	98.1
22. $1137-62$ Pak-8 97.8 23. $1113-62$ Pak-111 97.6 24. $1135-62$ Pak-111 97.6 25. $1122-62$ Pak-111 96.9 26. $1134-62$ Pak-111 92.7 27. $1141-62$ AC134 92.1 28. $1131-62$ Pak-111 91.8 29. $116-62$ Pak-111 89.9 30. $1124-62$ Pak-111 89.3 31.Pak-111Standard 87.9 32. $1144-62$ AC158 86.3 33. $1133-62$ Pak-111 85.9 34. $1153-62$ AC301 85.4 35.AC134Standard 84.2 36. $1146-62$ $320F$ 82.5 37. $1119-62$ Pak-111 81.5 39. $113-62$ Pak-111 79.9 40. $1126-62$ Pak-111 76.4 41.L.S.S.Standard 74.5 42. $117-62$ Pak-111 72.1 43. $1151-62$ AC157 72.1 44. $1152-62$ AC157 72.1 45. $1128-62$ Pak-111 70.2 46. $111-62$ Pak-111 67.1	20.			
23.1113-62Pak-11197.624.1135-62Pak-11197.325.1122-62Pak-11196.926.1134-62Pak-11192.727.1141-62AC13492.128.1131-62Pak-11191.829.1116-62Pak-11189.930.1124-62Pak-11189.331.Pak-111Standard87.932.1144-62AC15886.333.1133-62Pak-11185.934.1153-62AC30185.435.AC134Standard84.236.1146-62320F82.537.1119-62Pak-11181.539.113-62Pak-11179.940.1126-62Pak-11176.441.L.S.S.Standard74.542.1117-62Pak-11172.143.1151-62AC15772.144.1152-62AC15772.145.1128-62Pak-11170.246.111-62Pak-11167.1	21.	1129-62		97.8
24.1135-62Pak-11197.325.1122-62Pak-11196.926.1134-62Pak-11192.727.1141-62AC13492.128.1131-62Pak-11191.829.116-62Pak-11189.930.1124-62Pak-11189.331.Pak-111Standard87.932.1144-62AC15886.333.1133-62Pak-11185.934.1153-62AC30185.435.AC134Standard84.236.1146-62320F82.537.119-62Pak-11181.539.113-62Pak-11179.940.1126-62Pak-11176.441.L.S.S.Standard74.542.1117-62Pak-11172.143.1151-62AC15772.144.1152-62AC15772.145.1128-62Pak-11170.246.111-62Pak-11167.1	22.			
25. $1122-62$ Pak-11196.926. $1134-62$ Pak-111 92.7 27. $1141-62$ AC134 92.1 28. $1131-62$ Pak-111 91.8 29. $1116-62$ Pak-111 89.9 30. $1124-62$ Pak-111 89.3 31.Pak-111Standard 87.9 32. $1144-62$ AC158 86.3 33. $1133-62$ Pak-111 85.9 34. $1153-62$ AC301 85.4 35.AC134Standard 84.2 36. $1146-62$ $320F$ 82.5 37. $1119-62$ Pak-111 81.5 39. $113-62$ Pak-111 79.9 40. $1126-62$ Pak-111 76.4 41.L.S.S.Standard 74.5 42. $117-62$ Pak-111 72.1 43. $1151-62$ AC157 72.1 44. $1152-62$ AC157 72.1 45. $1128-62$ Pak-111 70.2 46. $111-62$ Pak-111 67.1	23.			97.6
26. $1134-62$ $Pak-111$ 92.7 $27.$ $1141-62$ $AC134$ 92.1 $28.$ $1131-62$ $Pak-111$ 91.8 $29.$ $1116-62$ $Pak-111$ 89.9 $30.$ $1124-62$ $Pak-111$ 89.3 $31.$ $Pak-111$ $Standard$ 87.9 $32.$ $1144-62$ $AC158$ 86.3 $33.$ $1133-62$ $Pak-111$ 85.9 $34.$ $1153-62$ $AC301$ 85.4 $35.$ $AC134$ $Standard$ 84.2 $36.$ $1146-62$ $320F$ 82.5 $37.$ $119-62$ $Pak-111$ 81.5 $39.$ $113-62$ $Pak-111$ 81.5 $39.$ $113-62$ $Pak-111$ 79.9 $40.$ $1126-62$ $Pak-111$ 76.4 $41.$ $L.S.S.$ $Standard$ 74.5 $42.$ $117-62$ $Pak-111$ 72.1 $43.$ $1151-62$ $AC157$ 72.1 $44.$ $1152-62$ $AC157$ 72.1 $45.$ $1128-62$ $Pak-111$ 70.2 $46.$ $111-62$ $Pak-111$ 67.1	24.	1135-62		
27. $1141-62$ AC134 92.1 28. $1131-62$ Pak-111 91.8 29. $116-62$ Pak-111 89.9 30. $1124-62$ Pak-111 89.3 31.Pak-111Standard 87.9 32. $1144-62$ AC158 86.3 33. $1133-62$ Pak-111 85.9 34. $1153-62$ AC301 85.4 35.AC134Standard 84.2 36. $1146-62$ $320F$ 82.5 37. $119-62$ Pak-111 81.5 39. $113-62$ Pak-111 79.9 40. $1126-62$ Pak-111 76.4 41.L.S.S.Standard 74.5 42. $1117-62$ Pak-111 72.1 43. $1151-62$ AC157 72.1 44. $1152-62$ AC157 72.1 45. $1128-62$ Pak-111 70.2 46. $111-62$ Pak-111 67.1				
28. $1131-62$ Pak-11191.829. $1116-62$ Pak-111 89.9 30. $1124-62$ Pak-111 89.3 31.Pak-111Standard 87.9 32. $1144-62$ AC158 86.3 33. $1133-62$ Pak-111 85.9 34. $1153-62$ AC301 85.4 35.AC134Standard 84.2 36. $1146-62$ $320F$ 82.5 37. $119-62$ Pak-111 81.5 39. $113-62$ Pak-111 79.9 40. $1126-62$ Pak-111 76.4 41.L.S.S.Standard 74.5 42. $1117-62$ Pak-111 72.1 43. $1151-62$ AC157 72.1 44. $1152-62$ AC157 72.1 45. $1128-62$ Pak-111 70.2 46. $111-62$ Pak-111 67.1	26.			
29.116-62Pak-111 89.9 30.1124-62Pak-111 89.3 31.Pak-111Standard 87.9 32.1144-62AC158 86.3 33.1133-62Pak-111 85.9 34.1153-62AC301 85.4 35.AC134Standard 84.2 36.1146-62320F 82.5 37.1119-62Pak-111 81.5 39.1113-62Pak-111 79.9 40.1126-62Pak-111 76.4 41.L.S.S.Standard 74.5 42.1117-62Pak-111 72.1 43.1151-62AC157 72.1 44.1152-62AC157 72.1 45.1128-62Pak-111 70.2 46.1111-62Pak-111 67.1				
30. $1124-62$ Pak-11189.331.Pak-111Standard87.932. $1144-62$ AC15886.333. $1133-62$ Pak-11185.934. $1153-62$ AC30185.435.AC134Standard84.236. $1146-62$ $320F$ 82.537. $119-62$ Pak-11181.539. $113-62$ Pak-11179.940. $1126-62$ Pak-11176.441.L.S.S.Standard74.542. $117-62$ Pak-11172.143. $1151-62$ AC15772.144. $1152-62$ AC15772.145. $1128-62$ Pak-11170.246. $111-62$ Pak-11167.1	28.			
31.Pak-111Standard 87.9 32.1144-62AC158 86.3 33.1133-62Pak-111 85.9 34.1153-62AC301 85.4 35.AC134Standard 84.2 36.1146-62 $320F$ 82.5 37.1119-62Pak-111 81.5 39.113-62Pak-111 79.9 40.1126-62Pak-111 76.4 41.L.S.S.Standard 74.5 42.1117-62Pak-111 72.1 43.1151-62AC157 72.1 44.1152-62AC157 72.1 45.1128-62Pak-111 70.2 46.1111-62Pak-111 67.1	29.			89.9
32.1144-62AC158 86.3 $33.$ 1133-62Pak-111 85.9 $34.$ 1153-62AC301 85.4 $35.$ AC134Standard 84.2 $36.$ 1146-62 $320F$ 82.5 $37.$ 1119-62Pak-111 81.5 $38.$ 1110.62Pak-111 81.5 $39.$ 113-62Pak-111 79.9 $40.$ 1126-62Pak-111 76.4 $41.$ L.S.S.Standard 74.5 $42.$ 1117-62Pak-111 72.1 $43.$ 1151-62AC157 72.1 $44.$ 1152-62AC157 72.1 $45.$ 1128-62Pak-111 70.2 $46.$ 1111-62Pak-111 67.1	-			
33. $1133-62$ Pak-111 85.9 34. $1153-62$ AC301 85.4 35.AC134Standard 84.2 36. $1146-62$ $320F$ 82.5 37. $1119-62$ Pak-111 81.5 38. 1110.62 Pak-111 81.5 39. $113-62$ Pak-111 79.9 40. $1126-62$ Pak-111 76.4 41.L.S.S.Standard 74.5 42. $1117-62$ Pak-111 72.1 43. $1151-62$ AC157 72.1 44. $1152-62$ AC157 72.1 45. $1128-62$ Pak-111 70.2 46. $1111-62$ Pak-111 67.1				87.9
34. $1153-62$ AC301 85.4 $35.$ AC134Standard 84.2 $36.$ $1146-62$ $320F$ 82.5 $37.$ $1119-62$ Pak-111 81.5 $38.$ 1110.62 Pak-111 81.5 $39.$ $113-62$ Pak-111 79.9 $40.$ $1126-62$ Pak-111 76.4 $41.$ L.S.S.Standard 74.5 $42.$ $117-62$ Pak-111 72.1 $43.$ $1151-62$ AC157 72.1 $44.$ $1152-62$ AC157 72.1 $45.$ $1128-62$ Pak-111 70.2 $46.$ $111-62$ Pak-111 67.1				86.3
35.AC134Standard 84.2 36.1146-62 $320F$ 82.5 37.1119-62Pak-111 82.2 38.1110.62Pak-111 81.5 39.113-62Pak-111 79.9 40.1126-62Pak-111 76.4 41.L.S.S.Standard 74.5 42.1117-62Pak-111 72.1 43.1151-62AC157 72.1 44.1152-62AC157 72.1 45.1128-62Pak-111 70.2 46.1111-62Pak-111 67.1				85.9
36. $1146-62$ $320F$ 82.5 $37.$ $1119-62$ $Pak-111$ 82.2 $38.$ 1110.62 $Pak-111$ 81.5 $39.$ $1113-62$ $Pak-111$ 79.9 $40.$ $1126-62$ $Pak-111$ 76.4 $41.$ L.S.S.Standard 74.5 $42.$ $1117-62$ $Pak-111$ 72.1 $43.$ $1151-62$ $AC157$ 72.1 $44.$ $1152-62$ $AC157$ 72.1 $45.$ $1128-62$ $Pak-111$ 70.2 $46.$ $1111-62$ $Pak-111$ 67.1				85.4
37. $1119-62$ Pak-111 82.2 $38.$ 1110.62 Pak-111 81.5 $39.$ $1113-62$ Pak-111 79.9 $40.$ $1126-62$ Pak-111 76.4 $41.$ L.S.S.Standard 74.5 $42.$ $1117-62$ Pak-111 72.1 $43.$ $1151-62$ AC157 72.1 $44.$ $1152-62$ AC157 72.1 $45.$ $1128-62$ Pak-111 70.2 $46.$ $1111-62$ Pak-111 67.1	35.			
38.1110.62Pak-111 81.5 $39.$ 1113-62Pak-111 79.9 $40.$ 1126-62Pak-111 76.4 $41.$ L.S.S.Standard 74.5 $42.$ 1117-62Pak-111 72.1 $43.$ 1151-62AC157 72.1 $44.$ 1152-62AC157 72.1 $45.$ 1128-62Pak-111 70.2 $46.$ 1111-62Pak-111 67.1		-		
39.1113-62Pak-11179.940.1126-62Pak-11176.441.L.S.S.Standard74.542.1117-62Pak-11172.143.1151-62AC15772.144.1152-62AC15772.145.1128-62Pak-11170.246.1111-62Pak-11167.1				
40. $1126-62$ Pak-11176.441.L.S.S.Standard74.542. $1117-62$ Pak-11172.143. $1151-62$ AC15772.144. $1152-62$ AC15772.145. $1128-62$ Pak-11170.246. $1111-62$ Pak-11167.1				
41.L.S.S.Standard $74 \cdot 5$ 42.1117-62Pak-111 $72 \cdot 1$ 43.1151-62AC157 $72 \cdot 1$ 44.1152-62AC157 $72 \cdot 1$ 45.1128-62Pak-111 $70 \cdot 2$ 46.1111-62Pak-111 $67 \cdot 1$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
43. 1151-62 AC157 72.1 44. 1152-62 AC157 72.1 45. 1128-62 Pak-111 70.2 46. 1111-62 Pak-111 67.1	-			
44. 1152-62 AC157 72.1 45. 1128-62 Pak-111 70.2 46. 1111-62 Pak-111 67.1		1117-02	AC157	
45. 1128–62 Pak-111 70.2 46. 1111–62 Pak-111 67.1			AC157	
46. 1111-62 Pak-111 67.1		1128-62	Pak-111	70.2
47. 1149–62 AC256 53.6		1111-62	Pak-111	67.1
	47.	1149-62	AC256	53.6

	н.		1-170NS				c Adjustment = $\frac{27045.60}{25140.27}$ = 1.076Ns. c Precision of Results = $\frac{5782262.20}{230} \pm \frac{25140.27}{229} = 2.048$ we reduction in error from adjustment by foliage percentage is quite market). Both F values before and after adjustment of insignificant but there is sufficient improvement after adjustment to indicate that method is sound.)	I	FAMILIES FOR	TED YIELD OI THE YEAR I	963-64
							adjus	S. No.	Family	Origin	Yield
			13585.22	12276.36	12495.30		fter	Ι.	1021-63	AC158	129
M.S.			85	276	495		d a	2.	AC-307	Standard	122
			135	12	12		and	3.	1017-63	AC306	115
and the second							ore	4.	1018-63	AC-306	107
							bef	5.	1024-63	AC158	102
				6	5		les ld.)	6.	1028-63	AC256	102
D.F.			46	229	275		valı	7.	1014-63	Pak-8	IOI
							IS S	8.	1011-63	Pak-111	100
C1 .							oth	9.	1008-63	Pak-111	.98
X			4	38	52		eth B	9. 10.	1027-63	AC256	9
SX			624920.14	1.	1.		et).	II.	<u>987–63</u>	Pak-111	
- P			192(128	620		ark				9
SY2-b. SXY			624	2811287.38	3436207.52		te t	12.	966-63	Pak-111	9
S				2	(T)		8 nite lica	13.	1015-63	AC-306	9
							2.048 e is qui to indi	14.	1006–63	Pak-111	9
			6	4	2		=2. to	15.	1026–63	AC275	9
			620307.39	2970974.64	3590152.15		36 ent	16.	1022-63	AC158	9
			30.	.260	015.		25140.27 12276.36 2 percenta adjustmen	17.	999-63	Pak-111	8
			620	970	59(514 227 per dju:	18.	1004-63	Pak-111	8
				2	3		1 2 Sc 1	19.	1012-63	Pak-111	8
							38 Jiag	20.	1007-63	Pak-111	8
9	9	9	>	56	33		287. 229 by fo	21.	990-63	Pak-111	8
SX2		1	90.76	S	87.23		2811287.38 229 tent by foliag ovement afte 3.	22.	1005-63	Pak-111	8
S		Ĩ	6		∞		ent ove	23.	1013-63	Pak-8	8
							=1.076NS. 2262.20 2 230 ÷ : 230 n adjustme cient impro	24.	Pak-111	Standard	8
							076 076	25.	L.S.S.	Standard	8
02	02		6834.59	72	.31	33	=1.0 262.252.2530 1 ad	26.	992-63	Pak-111	8
1855.02	55		34.	34322.72	41157.31	43012.33	$\frac{60}{27} = 1.076^{h}$ $\frac{27}{5782262.20}$ $\frac{230}{\text{from adjust}}$ at 5% = 1.	27.	1001-63	Pak-111	8
18	18		68	343	411	430	$\frac{27045.60}{25140.27}$ $\frac{57}{57}$ esults =	28.	1019-63	AC-134	7
							045 140 140 rei		995-63	Pak-111	
							27 25 csu csu the the F	29.	995–03 1003–63	Pak-111 Pak-111	7
83	83		65	02	67	50	f R Sut in 54;	30.		Pak-111	7
23.	23.		244097.65	52.	59.	83.	nen n o nt l 1.6	31.	985-63		7
92023.83	20.		40	5782262.02	7026359.67	7118383.50	Adjustment= $\frac{27045.60}{25140.27}$ =1.076NS. precision of Results= $\frac{2782262.20}{230}$ ÷ s reduction in error from adjustme significant but there is sufficient improved at 1%=1.64; F value at 5%=1.43	32.	991-63	Pak-111	7
	5		124	578	707	711	dju reci 3nij	33.	988-63	Pak-111	7
				10.15			c A e P1 vs nsię at	$34 \cdot$	997-63	Pak-111	7
							for triv hov is i lue	35.	1020-63	AC-134	7
34.90	90 30	30		50	80	70	F before Adjustment= 27045. 25140. Relative precision of Results= (It shows reduction in error yield is insignificant but there is F value at 1%=1.64; F value	36.	1023-63	AC-158	7
34.90	4.			396.50	471.80	506.70	H X ŪKH	37.	AC-134	Standard	7
	(7)	1	-	39	4	50		38.	994-63	Pak-111	7
								39.	1025-63	AC275	7
				0	5			40.	1009–63	Pak-111	7
5	(Y)		46	230	276	281		41.	1002-63	Pak-111	79
								42.	1016-63	AC-306	79
					JC			42. 43.	989-63	Pak-111	6
					err(909-03 998-63	Pak-111	6
					pu	al		44.	1010–63	Pak-111	66
0			Se		Families and error	Total	· · · ·	45·		Pak-111 Pak-111	
due to Blocks	cks	.ili.	TIT	OL	nilic	L		46.	993.63		6
du lo	3lo an	Families		Error	an			47.	1000–63	Pak-111	49

A.H. KHAN, S.D. SHAH and M. NAGUIB

SEED COTTON AND ITS RELATION TO LEAF NUMBER

Variation due to	D.F.	SX2	SY2	SXY	$b = \frac{SXY}{SX2}$	b. SXY	SY2-b. SXY	D.F.	M.S.	F.
Blocks	5	16.04	785023.20	1908.06						
Families	46	94.41	1762107.34	7799.58	82.61		1128105.82	46	24524.04	2.89
Error	230	221.30	3031177.80	15508.94	70.08	1086866.51	1944311.29	229	8490.44	
Families and error	276	315.71	4793285.14	23308.52	73.83	1720868.03	3072417.11	275	11172.43	
Total	281	331.75	5578308.34	25216.58						

E value before	diustmen	38306.68 t===2.91	
I value before I	rajustinen	13179.03	
S.E. of mean	_	37.617	$\sqrt{\frac{s2}{r}}$
S.E.D.M.	-	53.45	$\sqrt{\frac{2s^2}{r}} \left[1 + \frac{SX^2 \text{ for } t}{(t-1) SX^2} \right]$
C.D. 1	-	21.06 g per	plant
C.D. 2	= -	27.80 g per	plant

It is interesting to note that during the 2nd year again, selections of AC306, AC256, Pak-111 and Pak-8 proved better in yield than other types and AC158 selections showed better performance than during the previous year.

Total Leaf Number.—The total number of leaves in different families are given in Tables 5 to 8.

It will be clear from data presented in Table 5 that the range of leaf number in various families and standards for the year 1962–63 was 231.8 to 586.7, whereas it was only 53.1 to 178.3 per plant as shown in Table 7, which shows that the vegetative growth was more in all families in the first year as compared to the 2nd year and that L.S.S. the commercial variety had the maximum vegetative growth during both the season with the only exception of Family No. 111-62, a selection of Pak-111 during the year 1962–63.

Only 5, 18 and 22 families possessed larger number of leaves than Pak-111, AC134 and AC 307 during the first year and 4, 2 and 6 families recorded higher leaf number than the same standards during the second year.

The differences in leaf number of various families and standards were non-significant during the first year 1962–63 and highly significant during the second year 1963–64.

Selection of AC256, AC306, AC134, AC192 showed fairly high leaf number per plant during both the years, whereas bulk of the Pak-111 selections showed lesser leaf number in general. The percentage values of leaves present at the first pick are given in Tables 9-12.

for error

It will be observed from Tables 9 to 12 that the range of foliage percentage on the plants at the time of first picking ranged from 17.6 to 69.0% in the first year and 46.2 to 83.6% in the second year which shows that percentage of leaf shedding during the first year was higher than that during the second year.

It will be further seen that the percentage of foliage in case of the L.S.S., the commercial variety of L.S.S. zone was 33.7 and 75.7 during the first and the second year respectively, whereas the foliage percentage in case of other standard varieties AC134, AC307 and Pak-111 was 24.8, 35.6 and 52.8 in the first year and 68.4, 76.5 and 74.4 percentage during the second year, which clearly shows that 13 families during 1962-63 and 39 families during the year 1963-64 had a higher rate of leaf shedding than L.S.S.; the present commercial variety of Lyallpur area; similarly 6 and 21 families were superior to AC134 in leaf shedding during the two years; 17 and 42 families surpassed AC307 in this respect for the same period whereas 29 and 36 families showed s superiority over Pak-III during the two years.

The differences in foliage percentage at the first picking during both the years were found to be significant.

Consolidated Data for Yield and Leaf Number.—The data pertaining to both the characters i.e., yield and leaf number for all the families are presented separately for 1962–63 and 1963–64.

A.H. KHAN,	S.D.	SHAH	and	M.	NAGUIB	
------------	------	------	-----	----	--------	--

Table 5 of D	.—Adjusted ifferent Fai	TOTAL NUMBE MILIES DURING	ER OF LEAVES 1962–63.		ц		0.80NS.			
S. No.	Family	Origin	Total leaves	33.	M.S.		69571.23	86756.61		
г.	1111-62	Pak-111	586.7	LEAVES OF PROGENY ROW TEST FOR 1962-63			6957	8675		
2.	L.S.S.	Standard	399.4	RI						
3.	1126-62	Pak-111	367.3	FO	н.	C	4	6	3	
4.	1150-62	AC256	360.7	EST	D.F.	-	34	169	203	
5.	1134-62	Pak-III	355.7	T						
6.	Pak-111	Standard	348.7	YOM	Σ.		92	56	48	
7.	1139-62	AC306	342.7	K B	SY2-b.SXY		2365421.92	14661867.56	17027289.48	
8.	1118-62	Pak-111	340.4	JEN.	5Y2-		3654	6618	0272	
9.	1138-62	AC306	339-8	ROC			5	14	17	
10.	1115-62	Pak-111	338.2	E E	14 AN 12					
11.	1143-62	AC192	$333 \cdot 5$	6				.37	.24	
12.	1140-62	AC134	327.1	VE	b. SXY			14017979.37	17220009.24	
13.	1125-62	Pak-III	321.1	LEA	p.			4017	1220	
14.	1128-62	Pak-111	316.6					-	1	
15.	1120-62	Pak-111	315.1	SR (N. Inc.					
16.	1124-62	Pak-111	308.6	MBF	SXY SX2			242.32	241.43	
17.	1123-62	Pak-111	308.2	Nu	$b = \frac{SXY}{SX2}$			242	241	
18.	1129-62	Pak-111	307.9	AL		I .				
19.	AC134	Standard	304.1	TOTAL NUMBER OF		30	02	04	90	36
20.	1149-62	AC256	302.1	R	SXY	7916.30	13476.02	57849.04	71325.06	79241.36
21.	1110-62	Pak-111	301.7	FO		1	13.	57	71:	192
22.	1114-62	Pak-111	300.1	NCE						
23.	AC301	Standard	299.7	RIAJ		5.41	.79	5.93	8.72	.13
24.	1132-62	Pak-111	298.9	[A]	SY2	2638886.41	5567451.79	984(7298	6185
25.	1136-62	Pak-8	291.5	OF COVARIANCE FOR	34 C	263	556	28679846.93	34247298.72	36886185.13
26.	1144-62	AC158	291.4	OF	v					63
27.	1112-62	Pak-111	289.2	SIS			0	3	~	0
28.	1113-62	Pak-111	286.0	ALA	SX2	26.27	56.70	238.73	295.43	321.70
29.	1117-62	Pak-111	276.1	-An			4)	23	29	32
29. 30.	1144-62	320F	275.5	l.						
31.	1127-62	Pak-111	274.8	E (D.F.	5	34	170	204	209
32.	1131-62	Pak-111	274.0	TABLE 6.—ANALYSIS						
32. 33.	1116-62	Pak-111	269.7	H					rror	
33. 34.	1121-62	Pak-111	266.3						nd ei	П
34. 35.	1121-62	Pak-111	231.8		Variation due to	Blocks	Families	Error	Families and error	Total

6.00 TABLE 7.-ADJUSTED TOTAL NUMBER OF LEAVES OF DIFFERENT FAMILIES FOR 1963-64. Ľ. Total S. No. Family Origin number of 142913.04 23837.53 TEST FOR 1963-64. leaves M.S. L.S.S. Standard. 178.3 Ι. 1018-63 Pak-111 175.7 2. AC134 Standard 174.5 3. D.F. Pak-111 219 263 1013-63 170.6 44 4. Standard. 169.2 Pak-111 $5 \cdot$ 1008-63 Pak-111 164.2 6. PROGENY ROW Standard. AC307 157.4 7. 5288173.70 5220418.45 11508592.15 SY2-b.SXY Pak-111 152.0 8. 985.63 of mean=63.031; S.E.D.M.=90.68; C.D. 1. at t 5%=35.73 per plant; C.D. 2 at t 1%=47.15 per plant. AC134 148.4 1019-63 9. Pak-8 143.6 1014-63 10. AC306 1017-63 142.1 II. AC256 1028-63 141.5 12. OF Pak-III 1003-63 139.7 3301581.72 13. 3674228.54 b. SXY Pak-111 138.4 1006-63 14. OF LEAVES AC256 138.3 1027-63 15. AC275 136.3 1026-63 16. AC306 134.5 17. 1015-63 990-63 Pak-III 132.9 18. 188.16 NUMBER SXY SX2 111.96 Pak-111 19. 1005-63 130.5 Pak-111 20. 989-63 129.5 P= Pak-111 128.9 21. 988-63 Pak-111 22. 1011-63 127.0 COVARIANCE FOR TOTAL Pak-111 124.4 3282.35 961.79 19527.15 1012-63 29488.94 32771.29 23. Pak-111 1002-63 124.2 SXY 24. AC274 1025-63 119.6 25. Pak-III 26. 996-63 113.7 AC158 1021-63 112.9 27. 28. 992-63 Pak-111 112.3 2045545.18 5915526.88 14810173.87 16855719.05 8894646.99 Pak-111 111.9 1007-63 29. 1004-63 Pak-III 110.7 30. SY2 Pak-111 109.2 987.63 31. 1020-63 AC134 105.0 32. OF 987-63 Pak-III 104.2 33. 8.—ANALYSIS Pak-111 20.39 995-63 103.4 263.38 283.77 34. 159.60 103.78 SX2 AC306 1016-63 99.8 35. Pak-111 36. 1010-63 97.I AC158 37. 1024-63 96.3 Pak-111 38. 997-63 95.5D.F. 5 44 264 269 220 TABLE Pak-111 39. 994-63 90.I AC158 85.6 40. 1022-63 S,E, Families and error Pak-III 1000-63 84.7 41. 42. 998-63 Pak-III 83.7 Total 991-63 Pak-111 74.8 43. Variation due to Blocks Families 1023-63 AC158 72.3 44. Error 993-63 Pak-III 53.1 45.

SEED COTTON AND ITS RELATION TO LEAF NUMBER

TABLE 9.—PERCENTAGE OF FOLIAGE ON TABLE 10.—ANALYSIS OF VARIANCE FOR PER-

Ind		PICK $1962-63$.	INGE ON	CENTAGE OF FOLIAGE ON FIRST PICK 1962-63.			
S. No.	Family	Origin	Foliage %	Variation due to D.F.	S.S. M.S	S. F. Ratio	
г.	1132-62	Pak-111	69.0	Blocks 5	116.53	of Pa	
2.	1112-62	Pak-111	67.1		22861.70 496.9		
3.	1120-62	Pak-111	66.0		3048.90 13.2 26027.13	20	
3. 4.	1142-62	AC192	65.5				
	1134-62	Pak-111	65.I	TABLE II.—PERCENT	AGE OF FOLIAGE 1963-64.	ON FIRST	
5. 6.	1134-02	Pak-111				<u>A .2</u>	
		*	64.I	S. No. Family	Origin	Foliage%	
7.	1118-62	Pak-111	61.8	1. 985–63	Pak-111	83.6	
8.	1141-62	AC134	61.7	2. 1026–63	AC275	83.1	
9.	1139–62	AC306	61.1	3. 1027-63	AC256	81.6	
10.	1121-62	Pak-111	60.8	4. 1028–63 5. AC307	AC256 Standard	79.9	
11.	1153-62	AC301	60.5	5. AC307 6. 1008–63	Pak-111	76.5 76.5	
12.	1140–62	AC134	60.0	7. 1025-63	AC275	75.8	
13.	1138-62	AC306	59.8	8. L.S.S.	Standard	75.7	
14.	1126-62	Pak-111	57.8	9. 1014–63	Pak-8	75.4	
15.	1144–62 📑	AC158	57.2	10. 1007–63	Pak-111	74.5	
16.	1136-62	Pak-8	56.3	11. Pak-111	Standard Pak-8	74.4	
17.	1113-62	Pak-111	55.7	12. 1013–63 13. 1017–63	AC306	74.2	
18.	Pak-111	Standard	52.8	13. $1017-0314. 996-63$	Pak-111	$73 \cdot 9$	
19.	1148-62	AC256	48.3	987-63	Pak-111	$\begin{array}{c} 73 \cdot 9 \\ 73 \cdot 7 \end{array}$	
20.	1150-62	AC256	47.4	16. 1012-63	Pak-111	72.6	
21.	1117-62	Pak-111	46.2	17. 1024–63	AC158	71.9	
22.	1130-62	Pak-111	45.1	18. 988-63	Pak-111	71.5	
23.	1124-62	Pak-111	44.5	19. 997-63	Pak-111	71.4	
24.	1133-62	Pak-111	44.4	20. $1011-63$	Pak-111 Pak-111	71.3	
25.	1116-62	Pak-111	40.9	21. $1005-63$ 22. $1009-63$	Pak-111 Pak-111	1 71.I	
26.	1149-62	AC256	40.6	23. 1015-63	AC306	70.5 70.4	
27.	1128-62	Pak-III	40.I	24. 1022-63	AC158	70.2	
28.	1135-62	Pak-111	39.2	25. 1003-63	Pak-III	68.7	
:29.	1146-62	320F	37.7	26. I AC134	Standard	68.4	
30.	AC307	Standard	35.6	27. 11 1002-63	Pak-111	68.3	
31.	1137-62	Pak-8	35.4	28. 990.63	Pak-111	67.9	
32.	1152-62	AC157	35.4	29. 1021–63 30. 989–63	AC158 Pak-111	67.6	
33.	1129-62	Pak-111	$34 \cdot 4$	30. 989–63 31. 1023–63	AC158	$\begin{array}{c} 67.4 \\ 67.3 \end{array}$	
34.	L.S.S.	Standard	$33 \cdot 7$	32. 992-63	Pak-111	67.1	
35.	1131-62	Pak-111	31.4	33. 1000–63	Pak-111	66.3	
36.	1111-62	Pak-111	$3^{1}.4$	$34 \cdot 995 - 63$	Pak-111	65.9	
37.	1115-62	Pak-111	31.4	35. 1016–63	AC306	65.9	
.38.	1119-62	Pak-111	30.3	36. 994-63	Pak-111	65.4	
39.	1127-62	Pak-111	29.6	37. 1004–63 38. 991–63	Pak-111 Pak-111	65.2	
40.	1125-62	Pak-111	25.9	39. 1006-63	Pak-111 Pak-111	64.5	
41.	AC134	Standard	24.8	40. 1018–63	AC306	$63.8 \\ 62.4$	
.42.	1151-62	AC157	24.2	41. 1001-63	Pak-111	62.1	
43.	1123-62	Pak-111	23.4	42. 1010-63	Pak-111	61.5	
44.	1122-62	Pak-111	23.4	43. 1025-63	AC275	58.8	
45.	1147-62	320F	23.2	44. 998-63	Pak-111	56.6	
46.	1143-62	AC192	23.1	45. 1019-63	AC134	52.5	
47.	1114-62	Pak-III	17.6	46. $999-63$	Pak-111 Pak-111	49.9	
	•			47. 993-63	1 ak-111	46.2	

SEED COTTON AND ITS RELATION TO LEAF NUMBER

TABLE 12.—ANALYSIS OF VARIANCE FOR PER-CENTAGE OF FOLIAGE ON FIRST PICK 1963–64.

Variation due to	D.F.	S.S.	M.S.	F. Ratio
Blocks	5	1417.81		1.2.2
Families	46	9448.94	205.41	3.63**
Error	230	12997.73	56.51	
Total	281	23864.48		

** Highly significant.

It will be seen from Table 13 that during the year 1962–63, 14 families had a very desirable combination of less number of leaves at the first picking and a higher yield as compared to the standard variety L.S.S., whereas 5 families had leaves less than 80 per plant as compared to 134.6 per plant in case of L.S.S.

On the other hand during the second year 1963-64, 44 families possessed lesser number of leaves at the first pick (Table 14) and 24 families showed a very desirable combination of low leaf number and high yield than L.S.S.

Discussion

The experimental results obtained from the present studies are discussed below:

During the year 1962-63, 40 families surpassed L.S.S., the commercial variety of Lyallpur zone in average yield, the actual being 74.5 grams for L.S.S. and 76.4 to 127.1 grams in the higher yielding families, and only six families gave lower yield than L.S.S., the yield range in this group being 53.6 to 72.1 grams. On the other hand only 24 families gave higher yield than L.S.S., in the second year 1963-64, the mean yield of L.S.S., being 81.3 grams and yield range of higher yielding families being 82.9 to 129.5 grams. The yield range of low yielding 22 families was 49.7 to 81.0 grams. The differences in yield were, however, non-significant during the first year and significant during the second year.

The total average number of leaves was on the whole highest in case of L.S.S. being 399.4 and 178.3 during the first and second year respectively, whereas the range of leaves in the entire material excepting Family No. 1111-62 was 231.8 to 367.3 in 1962-63 and 53.1 to 175.7 during the second year 1963-64.

The percentage of foliage present at the time of first picking in 1962-63 was 33.7 in case of L.S.S. and 33 families possessed a higher percentage of

foliage at this stage and only 13 families showed higher percentage of shedding with a range of foliage present being only 17.6 to 31.4%. During the second year, however, the total number of leaves was comparatively very low due to shortage of irrigation supplies and less rainfall during the cotton season; but the percentage of foliage present at the time of first picking was rather high in the entire material, L.S.S., showed 75.7% foliage at this stage and only 7 familes possessed higher percentage of foliage than L.S.S.; whereas 39 families showed higher leaf shedding percentage than L.S.S. or lesser percentage foliage at the first picking.

A close study of Tables 13 and 14 show a very interesting and desirable combination of important characters i.e., yield and less foliage at the time of first picking. 14 families during 1962-63 surpassed L.S.S. in this respect with a leaf number range of 52.8 to 110.3 and yield range of 82.5 to 121.0 grams against mean leaf number of 134.6 and mean yield of 74.5 grams for L.S.S.

Similarly during the second year 24 families showed a better combination of high yield and low leaf number at the first picking as compared to L.S.S., the range of leaf number being 30.3 to 126.6 and yield range being 82.9 to 129.5 grams against 134.9 leaves and 81.3 grams mean yield for L.S.S.

The present findings are very interesting and it seems proper planning of cotton breeding programmes and careful selection can indeed be a most helpful in combining characters like high yield and low foliage at first picking.

The present findings seem to be of far reaching economic, significance as the findings of earlier research workers Ludwig⁸ Crowther⁹ Afzal and Ali¹⁰ and Khan and Stroman¹⁴ had clearly shown adverse effect of chemical or mechanical leaf shedding or defoliation on yield of cotton crop.

Ludwig⁸ stated that artificial defoliation done early in the season resulted in reduced yield and weak lint. Crowther4 observed from experiments in Sudan that heavy defoliation in October and November was associated with drastic reduction in yield. Afzal and Ali¹⁰ concluded that on the whole, defoliation of plants had deleterious effects both on yield and quality. Khan and Stroman¹⁴ recorded adverse effect of chemical defoliation with on yield and fibre quality. Similar were the findings of other workers i.e., Afzal² Bailey³ Sokalova⁸, Hall⁹ Hall and Lane¹¹ Brown¹³ Brown and Rhyne.¹⁶ The present findings have further confirmed the results already reported by Khan and Mirza^{19–21} and Khan, Shah and Neguib²⁶ pertaining to the scope of breeding of cotton varieties shedding leaves before first picking.

Summary

The research work on the problem of breeding of cotton varieties shedding leaves before first picking for improvement of grades was under taken at Lyallpur during the years 1962–63 and 1964–65. The findings of these researches are summarised herewith. The studies revolved that careful selection for higher leaf shedding character was effective in combining low leaf number at first pick with higher yield. 40 families in the first year and 24 families during the second year surpassed L.S.S., the commercial variety of Lyallpur zone in yield of seed cotton. The yield of 40 families during 1962-63 ranged from 76.4 to 127.1 grams against 74.5 grams in case of L.S.S. The range of yield in superior 24 families during the second year was 82.9 to 129.5 grams against 81.3 grams for L.S.S.

L.S.S., possessed the maximum number of leaves during both the years, excepting one family during

TABLE 13.—CONSOLIDATED DATA FOR YIELD AND LEAF NUMBER 1962-63.

S. No.	Family	Origin	Total leaves	Foliage % first pick	Actual leaf No. first pick	Yield (grams)
Ι.	1114-62	Pak-111	300.1	17.6	52.8	112.5
2.	1122-62	Pak-111	289.2	23.4	67.7	96.9
3.	1123–62	Pak-111	308.2	23.4	72.1	121.0
4.	AC_{134}	Standard	304.1	24.8	75.4	84.2
5. 6.	1143-62	AC192	335.5	23.1	70.0	110.0
6.	1127-62	Pak-111	274.8	29.6	81.3	99.4
7.	1125-62	Pak-111	321.1	25.9	83.1	107.7
8.	1131–62	Pak-111	274.0	31.4	86.0	91.8
9.	1133-62	Pak-111	231.8	$44 \cdot 4$	102.9	85.9
10.	1146-62	320F	275.5	37.7	103.9	82.5
11.	1129-62	Pak-111	307.9	44.4	105.9	97.8
12.	1115-62	Pak-111	338.2	31.4	106.2	106.2
13.	AC307	Standard	298.7	35.6	106.7	104.6
14.	1116-62	Pak-111	269.7	40.9	110.3	89.9
15.	1149-62	AC256	302.1	40.6	122.6	53.6
16.	1128-62	Pak-111	316.6	40.I	126.9	70.2
17.	1117-62	Pak-111	276.1	46.2	127.5	72.1
18.	L.S.S.	Standard	399.4	33.7	134.6	74.5
19.	1124-62	Pak-111	308.6	44.5	137.3	89.3
20.	1113-62	Pak-111	286.0	55.7	159.3	97.6
21.	1121-62	Pak-111	266.3	60.8	161.9	101.3
22.	1136-62	Pak-8	291.6	56.3	164.1	107.9
23.	1144-62	AC158	291.4	57.2	166.7	86.3
24.	1150-62	AC256	360.7	47.4	170.9	108.4
25.	Pak-111	Standard	348.7	52.8	184.1	87.9
26.	1111-62	Pak-111	586.7	31.4	184.2	67.1
27.	1110-62	Pak-111	301.7	64.1	193.3	81.5
28.	1140-62	AC134	327.1	60.0	196.3	98.6
29.	1138-62	$AC_{3}OG$	339.8	59.8	203.2	98.1
30.	1132-62	Pak-111	298-9	69.0	206.4	105.5
31.	1120-62	Pak-111	315.1	66.o	207.9	97.9
32.	1118-62	Pak-111	340.4	61.8	210.3	114.8
33.	1139-62	AC306	345.8	61.1	211.3	127.1
34.	1126-62	Pak-111	367.3	57.8	212.3	76.4
35.	1134-62	Pak-111	355.7	65.1	231.5	92.7

SEED COTTON AND ITS RELATION TO LEAF NUMBER

S. No.	Family	Origin	Total leaf number	Foliage% first pick	Actual leaf No. first pick	Yield (grams)
Ι.	993-63	Pak-111	53.1	46.2	24.5	63.2
2.	1012-63	Pak-111	124.4	72.6	30.3	86.2
3.	998-63	Pak-111	83.7	56.6	47.4	67.5
4.	991-63	Pak-111	74.8	64.5	48.2	75.4
5.	1023-63	AC158	72.3	67.3	48.6	72.1
6.	999-63	Pak-111	104.2	49.8	51.9	88.2
7.	1000-63	Pak-111	84.7	66.3	56.2	49.7
8.	1010-63	Pak-111	97.1	61.5	57.7	66.1
9.	994-63	Pak-111	90.I	65.4	58.9	71.1
9. 10.	1022-63	AC158	85.6	70.2	60.I	90.2
10. 11.	997-63	Pak-111	95.8	71.4	61.4	73.4
12.	1020-63	AC134	105.0	58.8	61.7	72.4
12.	1016-63	AC306	99.8	65.9	65.7	70.3
	995-63	Pak-111	103.4	65.9	68.1	76.3
14.	1024-63	AC158	96.3	71.9	69.2	102.6
15. 16.	1024 - 03 1004 - 63	Pak-111	110.7	65.2	72.2	87.3
	992-63	Pak-111	112.3	67.1		81.0
17. 18.	1021-63	AC158	112.3	67.6	75.4	129.5
	1019-63	AC134	148.4		76.3	
19.	987-63	Pak-111	140.4	52.5	77.9	79.3
20.		Pak-111	109.2	73.7	80.5 83.4	91.7 85.0
21.	1007–63 996–63	Pak-111		74.5	84.0	
22.	1002-63	Pak-111	113.7	$73 \cdot 9$ 68.3	84.8	91.7
23.	989-63	Pak-111	124.2	67.4		70.3
24.	1006-63	Pak-111	129.5 138.4	$\begin{array}{r} 67.4 \\ 63.8 \end{array}$	87.3 88.3	67.9
25. 26.	990-63	Pak-111		67.9		90.4 84.6
	1011-63	Pak-111	132.9		90.2	100.2
27. 28.		AC275	127.0	71.3	90.5	
	1025-63 988-63	Pak-111	119.6 128.9	75.8	90.6	71.0
29.		Pak-111		71.5	92.2	74.5
30.	1005-63		130.5	71.1	92.8	84.2
31.	1015-63	AC306 Pak-111	134.5	70.4	94.7	91.1
32.	1003-63		139.7	68.7	95.9	76.0
33.	1017-63	AC306 Pak-8	142.1	73.9	104.9	115.1
34.	1014-63		143.6	75.4	108.3	101.5
35.	1018-63	AC306	175.7	62.4	109.6	107.0
36.	1027-63	AC256	138.3	81.6	112.8	97.2
37.	1028-63	AC256	141.5	79.9	113.1	102.2
38.	1026-63	AC275 Standard	136.3	83.1	113.2	90.4
39.	AC134	Standard Standard	174.5	68.4	119.4	71.2
40.	AC307	Pak-111	157.4	76.5	120.4	122.0
41.	1008-63	Standard	164.2	76.5	125.6	98.7
42.	Pak-111	Pak-8	169.2	74.4	125.9	82.9
43.	1013-63	Pak-111	170.6	74.2	126.6	83.6
44.	985-63		152.0	83.6	127.0	
$45 \cdot$	L.S.S.	Standard	178.3	75.7	134.9	81.3

TABLE 14.—CONSOLIDATED DATA OF YIELD AND LEAF NUMBER 1963-64.

1962-63; the range in other families being 231.8 to 367.3 against 399.4 for L.S.S. in the first year and 53.1 to 175.7 against 178.3 for L.S.S. during the second year. 13 families showed less percentage of foliage than L.S.S., at first pick in 1962-63, and 39 families were better than L.S.S., on this respect during the second year.

Fourteen families showed a desirable combination of less leaf number and higher yield than L.S.S. in 1962–63 and 24 families were superior to L.S.S. in this respect during the second year, showing considerable scope for successful breeding of cotton varieties shedding leaves before firstpicking for obtaining high grades of cotton.

References

- I. M. Afzal, The Growth and Development of Cotton Plant and its Improvement in the Punjab (Supt.
- Govt. Printing, Press, Lahore, 1949). 2. A.H. Khan, Fifty Years Research and Improvement of Cotton in the Punjab. In Fifty Years of Agri. Education and Research (Department of Agriculture West Pakistan, Rippon Printing Press, Lahore, 1960).
- A.H. Khan, Cotton Research and Improvement in the Former Punjab, Agri. Pakistan, I, 3, 4 (1961).
- A.H. Khan, Recent Researches in the Improvement of Cotton Crop in Lyallpur Region, Food and Agri. News Mag., I, (1962).
- 5. A.H. Khan, Fifty years Research and Improvement of Cotton Crop in Lyallpur Region, Agri. Pakistan, 16, 45-55 (1965).
- 6. A.H. Khan and G.N. Stroman, Breeding of Cotton Varieties with Higher Grades, 5th Pakistan Sci. Conference, Lahore, Feb. (1952).
- 7. A.H. Khan and M.A. Mirza, Studies in Breeding of Cotton Varieties Shedding Leaves Before Picking. Proc. Agri. Sect., 17th Pakistan Science Conference, Karachi (1965).
- C.A. Ludwig, S. Carolina. Agri. Expt. Sta. 8. Bull., 238, 23(1927).
- F. Crowther, Ann. Bot. N. Ser., 5,14 (1941). 9.
- M. Afzal, Mem. Dept. Agri. Ind. Bot. Ser., **I**0. 17 (1930).
- M.A. Bailey, Report on the Work on Cotton II. Carried out by the Plant Breeding Section (Department of Agri. and Forests, Anglo Egyptian Sudan) (1930); Rept. Received from Exp. Sta. Empt. Cott. Grow. Corp.,
- pp. 1028–29. 12. K.V. Joshi, R.B. Gode and A.K. Shah, Monograph on Studies in the Physiology of the Broach Cotton Plant, I.C.C.C. Bombay (1941).
- P.W. Gull and E. Q. Dunnam, Experi-ments in Chemical Cotton defoliation, 13. Agri. Chem., **2,**33–35 (1947). N.F. Sokolova, Cotton (McGraw Hill, 1950).
- 14.
- V.L. Hall, Biochemical Composition of the 15. Cotton Leaves and their Chemical Defoliation as Affected by the Environment, Plant Pulp, **26,** 677–686 (1951). **16.** W.C. Hall and H.C. Lane, Compositional
- and Physiological Changes Associated

with Chemical Defoliation of Cotton, Plant Pulp, 27, 754-768 (1952).

- 17. M. Afzal, and M. Ali, Preliminary Studies in Defoliation and Close Spacing of Cotton,
- Pakistan J. Sci. Res., **4**, (1952). A.H. Khan, and G.N. Stroman, Breeding of Cotton Varieties for Complete Mer-18. cerization, 5th Pakistan Science Conference, Lahore (1952).
- 19. L.C. Brown, Chemical Defoliation of Cotton (1) Bottom leaf defoliation, Agron. J., **45,** 314-316 (1953).
- L.C. Brown and Rhyne, Chemical Defolia-tion of Cotton (II). The Influence of 20. Ball Maturity on the Defoliability of Species and Varieties of Cotton, Agron. J., **46**, 128–132 (1954). A.H. Khan and G.N. Stroman, The Effect
- 21. of Chemical Defoliation on Yield and Quality of Acala 1517C, Pakistan J. Sci. Res., 5, 3(1953).
- A.H. Khan and M.A. Mirza, Studies in 22. Breeding of Cotton Varieties Shedding Leaves Before Picking (2) Combining High Yield with Leaf Shedding, Proc. Agri. Sect., 17th Pakistan Science Conference, Karachi (1965).
- A.H. Khan and M.A. Mirza, Studies in Breeding of Cotton Varieties Shedding 23. Leaves Before Picking (3) Combining High Ginning Outturn with Desirable Characters, Proc. Agri. Sect., 17th Pakistan Science Conference, Karachi (1965).
- A.H. Khan and M.A. Mirza, Studies in 24. Breeding of Cotton Varieties Shedding Leaves Before First Picking (4) Combining Earliness with Other Desirable Characters, Proc. Agri. Sect., 17th Pakistan Science Conference, Karachi (1965).
- A.H. Khan, M.A. Khan and M. Neguib, 25. Further Studies in Breeding of Cotton Varieties Shedding Leaves Before Picking, Proc. Agri. Sect, 17th Pakistan Science Conference, Karachi (1965).
- 26. A.H. Khan, S.D. Shah and M. Neguib, Studies in Breeding of Cotton Varieties Leaves Before First Picking (4) Leaf Production and Shedding (Unpublished) (1966).
- C.H. Goulden, Methods of Statistical Analysis 27. (Burgess Publishing Co., Minneapolis, 1936).
- 28. R.A. Fisher, Statistical Methods for Research Workers (Oliver & Boyed, London, 1941).