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In part I of this paper, a statistical analysis of the sizes of various scientif c research organizations was shown
to yield two basic distributions for density of scientific effort versus their size, expressed as the number, N, of
scientific officers in a research unit. In order to analyze the factors underlying these tWO distinct distributions, a
theoretical model is here set up to represent the output of a research unit, consisting of N scientific officers, as a
function of their mutual interactions. These interactions are represented by (i) an interaction par arnerer , III, (ii) a
wasteful-effort parameter, IX,and (iii) a critical size parameter, No, and the following equation is obtained:

Per capita output cc 2 (!:!. ) "'/ J 1 + (!:!.) /II +IX1 '
No l No, J

with 0<111';;;;;'1 and 1<,,<2. Using the postulate that density of scientinc effort cc (per capita output)", this gives

Density of scicntific effort cc [2 (~o)1II1 {1+ (~O)III+"} ]"'. which can be solved to fit the

empirically derived distributions when 1. 8-m ";;:,,,;;;;;,1. 9. Taking IXin the middle of this range, i.e. " = 1 .83 -?i/ll,
we obtain 11~5! .md No=98±10, with III=O.20±O.05 for one distribution and 1II=0.6±O.1 for the second dis-
tribution.

The nearly constant value of No shows that the theoretical model is a good approximation, and the two values
obtained for Ill, viz. 0.2 and 0.6, indicate that the interdependence between workers is relatively small in case of
agriculture research, as against the high value for industrial research. A similarly high value ofm (~C.. 7) is obtained
for defence research in the U.K., which again yields No~IOO. The C0111mon value of98±10 for No provides us
with a quantitative formulation of the Parkinsonian decrease of efficiency, viz,

1/ f I + (N/No) 1/1-t o: } = I / { I -I- (N/98) I· 83 + 111/2}

and it is hoped to study the application of the corresponding output formula to various organizaticns in a later paper.

Introduction reduced to a constant interval of IO scientific
officers (instead of 30 in this case) was used as a
measure of this density of scientific efforts. The
distribution curves were plotted for this density
against N, for various organizations in the three
countries.

The study of the sizes of research groups in a
quantitative manner is a matter of considerable
importance for determining their optimum sizes,
so that the most effective utilization can be made
of the available manpower and laboratory facili-
ties. In part I of the present series! of papers, a The patterns for agriculture research (cf. Table
statistical analysis was made of the data available I) and industrial research appeared to be distinct,
for major research organizations? in the U.K., and were averaged separately, thus yielding the
Canada and Pakistan, utilizing the concept of two mean distributions reproduced in Fig. I.

"density of scientific effort". The sizes of the While that for agriculture research- (cf. Table I

institutes were measured in terms of N, the numbers and Figs. I (a) and 2(a) ) has a single maximum at
of scientific officer class per institute; and the N 28 ± I, falling to half-value at N 9 and 54,
total number of scientific officers working in the distribution of Fig. I (b) for scientific industri al'
laboratories or institutes of a given size e.g. research is bimodal, with main maximum at
30-59 scientific officers per laboratory, when N 69±2. This bimodal distribution can be
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considered as a composite of the two distributions
shown by broken lines, the subsidiary distribution
with maximum at N 28 being nearly identical
with that of Fig. I (a). In this way, it was found
that all the individual distributions (e.g. Fig. 2

(b) and (c)) are made up of various proportions
of the following two basic distributions:
( i ) Max. at N=28 ± I ; half-value at N 9 and 54.
(ii) Max. at N 69 ± 2; half-value at N 52 and 95.

Even the size-distribution curve for the defence
research establishments (Fig. 4 inset) appeared
to conform to this pattern. It was accordingly
decided to examine the mechanism operative
behind these two distributions, and in the present
communication we set out a theoretical model
for the interactions in a scientific research or-
ganization, which leads to a formula for the per
capita output of units of various sizes. This is
then Icorrelated with the empirical size distri-
butions found previously.

Basis of the Theoretical Model

Starting with the law of diminishing returns,
there has been considerable interest in studying
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Fig. l(a).-Mean plots for distribution of density of scien-
tific effort among institutes of various sizes for agriculture re-
search in U.K. and Canada, showing the small scatter about the
smooth mean curve, which has its peak at N=29 scientific officers
'per institute. (b) Corresponding mean distribution for industrial
scientific research in U.K., Canada, and Pakistan, showing the
main peak at N=69, and a subsidiary maximum at N=28±2.
The broken-line curves show the two component distributions.

the behaviour of organizations and units of various
sizes, as well as the possible relations between
size and efficiency. In recent years, Parkinsonr-t
has proposed the view that in a large number of
cases, the growth of organizations occurs at a
steady 5% to 6% per annum, regardless of the
total quantity of work done, and in some cases,
even this work is actually diminishing. Parkinson
lays down two axioms.' for this growth in size,
viz. (I) "An official wants to multiply subor-
dinates, not rivals", and (2) "Officials make
work for each other"; and therefrom follows the
building up of a pyramid with each official
having, on the average, two immediate sub-
ordinates. In addition, for a great many activi-
ties, one must also consider a third factor, namely
the aspects of cross-fertilization of ideas through
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Fig. 2.-Some separate distributions of density of scientific
effort among the institutes and laboratories of (a) the Research
Branch of the Canadian Department of Agriculture, (b) the
National Research Council of Canada, and (c) the Pakistan
C.S.I.R. and A.E.C.
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TABLE I.-BREAKDOWN OF SIZES OF INSTITUTES AND STATIONS IN AGRICULTURE RESEARCH.

U.K. Agriculture Research Canada Agriculture Research Mean density
No. of scientific r \ r- \ of scientific
officer class or Total no. Scientific No. of insti- Total no. of Scientific effort for
equivalent No. of insti- of scientfic effort per tutes and scientific effort per agriculture

tutes and units officer class interval of 10 officer class interval of 10
in the range officers stations in the range officers research

Less than 10 20xt 67 67 6xt 29 29 48
10- 19 8 120 120 14 200 200 160
20- 29 11 269 269 4 111 111 190
30- 39 3 100 100 8 269 269 184
40- 49 2 95 95 3 137 137 ]]6
50- 59 1 50 50 3 163 163 106
60- 79 1 71 36 1 77 38 37
80- 99 0 0 0 0 0 0 0

100-139 1 103 26 0 0 0 13
140-179 0 0 0 0 0 0 0

Note.-The data for units with less than 10 scientific officers have been multiplied by 2/3,because many of these do only tests.
trials or data collection.

mutual interactions of the workers, which would
be particularly important for scientists or other
thinkers. The growth in time as well as the per
capita productivity of a unit of any particular
size would of course depend on the resultant of
these three factors, whose relative magnitudes
and importance would vary with the nature and
type of activity. While both the axioms of
Parkinson may operate fully in case of desk
workers, it is possible that axiom I has a some-
what lesser significance for creative activities and
scientific research.

For setting up a model to analyze the empirical
distributions of sizes of research units found above,
we may in the first place assume that, in any more
or less stable system where equilibrium has been
reached, the distribution will be such that the
highest density of effort is in the particular units
having the highest level of efficiency, and vice
versa. It would then follow that the distribution
curve of scientific effort versus size would broadly
resemble the curve for efficiency (i.e. output per
worker) against size, and be approximately pro-
portional to some power n of this efficiency. The
index n can be expected to be fairly large, perhaps
around 4 to 8, because (as a general rule) a rela-
tively small drop in efficiency would be associated
with a relatively large decrease in probability for
the unit concerned. Thus,

Density of scientific effort
cc (per capita outpu t)« (I)

We may expect n to be indicative of the degree
of "cost conciousness" of the organization studied.
The problem then becomes one of setting up a
plausible model, giving the actual output of a
uni t of N research workers as a function of Nand
their mutual interactions.

The Theoretical Model

One might expect that, if there is no wasteful
effort, the output could be represented by 1> ( N),
a monotonously increasing function of N, which
represents the integrated numerical effect of the N
workers. However, it is well-known that the
useful output of any small unit increases at first
with the number of workers, but as the unit gets
bigger and bigger, a stage of diminishing returns,
sets in, and the output per worker in fact di-
minishes, as first laid down in the last century's
economics, and later elaborated by Parkinson. 3
Thus, in general mathematical terms, the total
output of any unit of N workers can be written as

Output= </>(N) X per capita efficiency (2)

where the per capita efficiency denotes the ratio
of actual output per worker to the ideal output if
the fact of diminishing returns were not operative.

The nature of<t>(N) merits careful considera-
tion. If, for example, the work is of a nature
centring around particular individuals, and where
there are little or no cross-stimulations or inter-
dependence, then

</>l(N)=ConstantxN

whereas under conditions when each worker is
linked up with, supported, and perhaps mentally
stimulated by the work of all the others, 1> (N)
will be proportional to NxN, i.e. N2, so that

In a typical modern research unit, there would
probably be intermediate degrees of interaction,
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although cases are imaginable where an even
higher order of mutual interaction than equation
3b may operate. In general, we may put, as a
first step,

cp (N)=ConstantxNtIl+I

where 0< m < I, and get

Outputee Oonstant X Ntll+T X per capita
efficiency (5)

Here the case of m= 0 clearly corresponds to zero
cross-stimulation.

The variation of per capita efficiency with N is
not easy to plot in detail, but we know that the
proportion of wasteful effort resulting from men
'''making work for each other" should increase
faster than N/II+ I at the very least, but more
probably as N2, or even as N2+m. The argument
for N2 is that each person also generates a wasteful
fraction of work proportional to JVI for everyone
else, so the total wasteful fraction is proportional to
.NI xN, i.e. N2. Thus, one can (as a first guess)
represent the efficiency by the function

Per capita efficiency=r/{I+(N/No)lI1+a} (6)

with No a constant, and I < a ~ 2, which should
certainly be valid for N < 2No or thereabouts.
The expression 6 has the characteristics that

(i) it is unity for N-'?o,
(ii) it drops slowly with increasing N at

first, and
(iii) it tends asymptocially to 0, as N--'? Co.

'We thus obtain from equations 5 and 6, the
-expression

Output=Constant XNm+ I/{I + (N/No)-dm} (7)

which approaches an upper limit of (constant X
.No 1+/11) for very large N, when a = r, bu t tends
to 0 like I /N when a =2, and we shall attempt to
determine a more precisely from the empirical
-curves, Now we can divide by N, and write

Output per worker

(
N)1Il=Constantix 2 "-:No /{I+(N/No)CX+1I1}

wh~re ~h~constant has been multiplied by ~-No/ll,
which IS Itself a constant parameter. If we limit
ourselves to I < a ~ 2, then equation 7 makes
the total ou.tput decrease like (No/N )a-r for
large N. ThIS would correspond to Parkinson's
description4 of the increase of Admiralty staff as the

strength of the British Navy decreased in the period
1914 to 1928. We may first restrict ourselves to a
discussion of equations 7 and 3 with a =1 and 2,
noting that, as an alternative to equations 7 and 8,
it can be argued that, if the wasteful interactions
leading to equation 6 always vary as Nx N, i.e.
N2, then the fall in efficiency should also be a
function of (N/NoV This would lead to the
equation

Output per worker
. N

=Constant X 2 ( No ) 1Il/{1+(N/No)2}
I

(8a)

which really corresponds to equation 8, with
a='2-m.

For m > 0, and a > 0, the expression 8 can be
seen to be zero for N =0, andto rise rapidly to a

maximum at NCl+IIl= (:;) X No'lI+a, after which

it drops asymptotically to zero, as shown in the
bottom of Fig. 3(a) and (b) for m=0.5, 1.0 and
1.5, witha=I and 2, respectively. The precise
nature of the asymptotic drop to zero in an actual
system depends on the value of a , and the graphs
of the above expression should provide a fairly
good representation of the variation in output of
organizations for values of N upto 2No, or even
4No. Recalling the previous argument of equa-
tion I, we get as a good approximation,

Density of effort cc (output per worker)»

[ (N)'" l (N )1II+a)]"=Constant X 2 No / l I + No ! (9)

This has a maximum value of~ I at
N (m)I/(/II+(J.) " m- = - ,whIch ISc::::m+ - (I-m)
No a 3
for a = rand 0< m < I, and c::::m + m (!-m)
for a ='2. Numerical values of (N/No)max at this
maximum are given in Table '2 for m=o. I tOI .2,
and a =1 and '2.

Values of the Three Para:rneters, a, :rnand N;

(8)

'vVecan now try to fit this expression 9 to the
empirical distribution curves of Figs. I and '2 for
the Agriculture Research and other research
organizations. In the first place, we see that we
can derive reasonable values of JVoand m in this
way. Clearly, the maxima in Figs. I and '2,
occurring at Nc::::'28 and 69, would fit in with
N lOO and 0.'2<m<0.8, or with m=0.4 and
No varying from 50 to 150. So, we may now
examine the behaviour of the function 9 with
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TABLE 2.

m O. I 0.2 0·3 0·4 0·5 0.6 0.8 1.0 1.2

(N) (IX=! .124 .261 ·396 .52 .63 ·73 .88 1.00 1.09
~No max LIX=2 .240 ·351 ·44 ·5! ·575 .63 .72 ·795 .855

1.6

1·2
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Fig 3 (a) and (b).-The behaviour of the porposed theoretical formula for per capita output, '~, and of (-~)n for 1l=4 and 8
and various values of the other parameters, o:and m. The abscissa in case of 1) is the ratio NINo, while for (.~)n, which is proportiona
to the density of effort, the abscissae are taken as NI(mNo) and N!(Vmf\'o) for IX =1 and 2, respectively, in order to make the posi-
tion of the maxima nearly independent of the value of 1/1.

n=4 and 8, taking m=o. 2, 0.5 and 1.0, so as to
cover the probable range of 0.2 to 0.6. Fig. 3(a)
and (b) show the twelve graphs of this function
plotted against Nf(m No) for ,,= I and Nf(vmNo)
for "=2, with the above-mentioned values of n
.and m, the maxima being now nearly coincident.
It is at once apparent that the shape of the graph
before the maximum is largely determined by the
product, m X n, while the tail is determined by a and
n, cf. the broken line curves for mn=2, n=2.
Approximate values of (m X n) for any particular
graph can be estimated from the part near the
origin (before it reaches half the peak value), and

are found to lie between I and 4 for fitting the
graphs [or the data in Figs. I and 2. From this,
we may deduce that if n has a fixed value, then
n :;,4, for m to be less than I. Furthermore, if
0: =2, then n=5 ± I and m=o. 2 to 0.8 (cf. Fig.3
(b)) apparently yield fair agreement with the
empirical graphs of Figs. I and 2. On the other
hand, the calculated graphs for" = I do not
reconcile readily with the empirical data.

For a more precise determination of ex, m and n
for the two basic distributions of Fig. I, either we
can make use of the points at which the curves of
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Fig. I fall to half their peak values to define three
quantities A, L, and R, and thence estimate m
and n as a first approximation, or better still plot
the two curves of Fig. I on "log-log" paper as
shown in Fig. 4, when the logarithmic graphs are
seen to become linear for small N, as well as for
large N. It can be shown from equation 9 that

log (density of effort)

N I (N )111+" r=n log 2 + mn log - - n log I + -
No No

which for small N becomesN (N )111+"
11 log 2 +nm log No - n No '
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Fig. 4.-Logarithmic plots of the two basic empirical distributions of density of scientific effort (cf. Fig. 1), showing the

approximately constant slopes for N--70 and for large N. The solid circles are for the agriculture research distribution with
peak at N=28, and the crosses are for the scientific industrial research effort having its peak at N=69. The third graph
(hollow triangles) is for the defence research in U.K., the actual distribution for which is reproduced in the inset.
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and for large N is

n log 2 - «n log n!! _ (!! )11I +rx
No No .

Thus, the slope of this "log-log" plot will tend
to the value (m X n) for very small N, and to the
value (- n X rx) for very large N. More pre-
cisely,

slope=nm-n(m+rx)(ZJm+rx/ I I+(ZJm+rx~

(NINo)m+rx, mn
I + (NINo)m+rxl 1+ (NINo)m+a

=-an

an + nm (ro)
1+ (NINo)m +r.t. I + (NINo) m+a

For N < < No, this gives as before

(Slope)N-7o=nm, ( r r a)

while for N~No, we obtain

(Slope)N~No = {-em + mn(NoIN)m+a}

-i- {I + (No/N)m +rx}.
whence
an=- (SlOpe)N,....,NoX{I + (No/N)m +a}

+mn(NoIN)m+a (lIb)

Noting that the "log-log" plots of Fig. 4
extend up to N 120±20, and that No~roo,
we take NoINc::::.o.8, and get (NoIN)m+et.c::::.0.7,
and so.find, as a first approximation,

rmc::::.-I·7X (slope)N~No+o. 7 X (slope)N-_+o.

Equations I I and 12 can now be used to estimate
the quantities (m X n) and (n X o: ) from the "log-
log" plots of Fig. 4 for the two basic distributions
of Fig. I. We thus find that

( i) for the distribution with peak at N 28,

(Slopejx,...•o=(mn)r =1 .00±0.05,

(Slope)N=rco= -4.6±0·3, whence from

equation 12, (et.n)r

=+4.6 X I.7+0.7XI.Oo=8·5,and

(ii) for the distribution with peak at N 69,
(Slope)N~o=(mn)II =3.8 ±o. 2,

equation 12, (rxn)!I

This yields a mean value of 9.3 ± I .3 for a. n.
It follows, taking o: =2, that n c: 9.3/2=4.9,
whence we get as a first approximation for the two
distributions,

1.00
m] =-- =0.20,

4·9

and this with the formula (N/No)max= (m/rx)Ij(m+rx)
gives us the values

By feeding these values of No back into equation
I I (b), we can obtain more accurate values for
an, VIZ.

rx(n)r=4.6X I .61+0.61 X I .00=8.0,
a(n)n=5·0 X 1.35+0.35 X 3 .3=3. I,

which gives us as a second approximation,
rxn 8.0 ± 0.0

n=
2 2

4. o. This yields

1.00
m =~- = 0.25 and

r 4.0 '
whence we get

The third approximation gives

n -_ ~ _.-Z~o.o h~ 3.55 ± 0.0, w ence
2 2.

1.00 8 3.3 1m]=---=0.2 ,mn= --=1 .07!
3·55 3·55 I

HI4c)
28 69 I

and (NO)l=-- = 66, (Noh = -8-=84 I0.425 o. 2 J

The successive values of n, m and No converge
steadily to the ultimate values of n=3 .3 and

mlI=I.I5

When this solution is attempted for a = I .5,-
it is found (cf. Appendix) that the successive ap.



M.M. QURASHI

TABLE 3.-VALUES OF n, m AND No OBTAINED FOR THE Two DISTRIBUTION~ OF FIG. I FOR VARIOUS
VALUES OF IX •

a 2.0 1.8 1.7 1.6 1.5 1.4
,---------, r: r=: r=: ---, r:

n 3·3 3·3 4·4 4·2 5·4 4· 7 7,5 5.8 > 10 7·3 > 10~IO
m 0.30 1.15 0.23 0.90 0.18 0.80 0.13 0.66 <0.01 0.52 <0. I ~0.38
No 64 83 78 89 90 93 118 102 > 150 II6 > I50~ 145

proximations for the first distribution diverge to
n>lo, m<o.1 and No>I50; and with IX =1.0,
as also a = 1.3, the approximations diverge for
both distributions. The results obtained with
various values of rc from a =2.0 down to IX = I .4
are tabulated below, and it is seen that the smallest
value of a for a convergent solution are 1.6 for
the first distribution (with peak at N 28),
and 1.4 for the second distribution. Comparing
with the corresponding values of m in Table 3, we
find that

IX ll1in.+m=I.76±0.03,
so that <? I . 76-m.
On the other hand, if m «; I, then the maximum
value of a appears to be-s- I .9, and we may con-
clude that

I .76-m ~ a ~ 1.9 (I5a)

Taking a in the middle of this range, we get the
most probable value as
or a=I.83-m/2! b)

a+m=I.83+m/2j (15
which is intermediate between the two considered
probable in section 3.

Having fixed the value of a in the above fashion,
we obtain the following values of the remaining
parameters, n, m, and No for the two distributions:

n[=5· I, mI =0.20, (No) [ 86 ") ( )
6 0 8 (j\r) -_ 109 j' T 5cnl= ·5, mil= ·5, 0 11

Interpretation and Conclusions

From these results, we can surmise that nand
No are constants, with mean values of

n=5.8±0.6 andNo=98±II, (I5d)

while m has a value of 0.20 for the first distribution
of Fig. I and 0.6 for the second distribution.
This surmise is further borne out by the fact that a
similar analysis of the U.K. data for defence
research establishments yields

nD=4·4, m=0.68, and No =100,
all of which are in close agreement with the values
found above.

Thus, we can justifiably conclude that:
( i) The expressions 8 and 9 proposed for the

output per worker and the density of
scientific effort are essentially correct, with
cx=I .8rm/2 and nC::=5t,

(ii) the size-parameter, No, is a constant with a
value close to 100, and

(iii) the interdependence parameter, m, has a
value of 0 .2 for agriculture research, and a
value of 0.6 to 0.7 for activities like
industrial research and defence research.

It is hoped to examine the formula 8 for output
more thoroughly and to study the yearwise varia-
tion in output of various organizations in a later
paper. This would throw further light on the
problems connected with possible strengthening and
regrouping of Existing research laboratories, etc.,
so as to keep the numbers of Scientific Officer'
class in each within the optimum limits of 28
and 69.
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Appendix

Fitting of Equarion 9 for a=I.5, 1.3, and 1.1.

Case (a) : IX = I .5

We next try a smaller value of IX , viz. I. 5, in
order to examine if a stable, convergent solution.
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is still possible. The first approximation gives us
n; ~g.8'iI .5=6.6, and thence

mr=I .00/6.6=0. 15, whence (Noh
=28/0.24=116

mn=3·8/6.6=0·57, whence (No)n
=6g/0.63=IOg

I
I

~ (I6a)
I

J
by feedingThe second approximation follows

these values into equation I I (b), viz.

(rm)r=4.6 X2 .23+ 1.28 X I .00=1 1.3,

so that nr=I 1.3/1 ·5=7 .g,

whence mn=I.oo/7.9=0.I27, and (No)rl
=28/0.22=127, I

I
(o:n)n=5·0X I .60+0.60X3·3=IO·3, I

~ (I6b)
I
I
J

so that nn=IO·3/I '5=6.g,

whence mn=3.8/6.g=0'55, and
(No) n=6g/0. 62= I I I.

The third approximation gives

(o:n)r=4.6 X2.84+ 1.43 X I .00=12. g,
so thatnr=I2.g/I.5=3.6,

whence mr=I .00/3.6=0. 116, and !
I

I(o:n)n=5·oX I .62+0.62 X3·3=ro·5, HI6c)
I

so that nn=ro·5/I.5=7·0, I
whence mn=3·3/7·0=0·54, and( No)n= I

=6g/0.6I=II3· J
The values of nIl and (NO)Il can be seen to

converage slowly towards nc=>. 3 and (No)n
= 116, while those of ni and (No)r for the dis-
tribution with peak at N 23 appear to diverge
rapidly. This is to be expected when No becomes
much greater than the highest value of N, so that
the factor (No(N)1X + m in equation I I (b) becomes
increasingly greater than I, as shown by the values
of (o:n)r in equations 16(b) and I6(c).

Thus, the fourth approximation gives us
(IXn)r=4.6=2 .67+ 1.67 X IOO=I4. I,

so that nr=I4· 1(1.5=9.4,
whence mr=I .00(9.4=0. ro6, and (Noh

=23(0.Ig=I47·

Case(b): IX =1.0
Similarly, we examine the behaviour of nIl and

(NO)Il when IX = 1.0, . starting with the first
approximation, which yields nIle::::ro, and therefore

muc::::3·8/10=0.33, and (Nohlc::::69/0'50= I38
(17a)

Subsituting these values back into equation I I (b) ,.
we get for the second approximation,

nn=5·0 X 1.93+0.98 X3 .8=13.6, whence

which is already beyond the upper limit of the
second distribution of Fig. I.

The third approximation now gives

nIl=5·0 X2 ·44+ I ·44 X3 .3=17.7, whence

mn=3.3(I7.7=0.2Is, and (No)n=6.g(0.28=
246 (17c)

and it is clear that the solution diverges rapidly.

Case (c) : 0: = I .3

We may also try an intermediate value ofo:,.
viz., 1.3, to see whether the solution converges.
here. The first approximation is nn=g. 3( I .3=
7 ·5, whence

Subsitituting these values into equation r I (b),
we get for the second approximation,

(o:n)n=5·0 X I .73 +0·73 X3 .3= 11·4,

whence nn= I I .4( J .3=3.8, and therefore

mn=3.8(8.8=0.43, and (No)n =6g(0.53=I30'
(I8b)

The third approximation now gives

(o:n)n=5.oX I .33+0.38x3.3=12.7,

whence nIl = I2 . 7(I .3 = 9 .3, and therefore

mn=3·8(9 .8=03·90, and (No)n=6g(0 .49 =141
(I8c)

Similarly, the fourth approximation gives us

(IXn)Il=5.oX2.0I+I .01 X3.8=I3.9,

whence nn= I3· g( J ·3= IO. 7, and therefore

mn= 3· 8( I0.7 =0. 35s' and (Nohr=6g(0·45s =
152, (I8d)
which shows clearly that this solution is also
divergent.


