CAROTENOID CONTENT OF SOME GREEN PLANTS

MAHMOOD AHMAD SHAH, A. KABIR QURESHI and MANZOOR ELAHI

P.C.S.I.R. Laboratories, Lahore 16

(Received April 23, 1968; revised June 6, 1968)

Total carotenoid and carotene contents of thirty fresh green plants of different families have been determined, Some leguminous and graminous plants have been found to be the rich sources. Total carotenoid and carotene contents of leaves and stems of some leguminous plants have also been determined separately. The effect of blanching on some leguminous plants shows that it is not necessary from the enzymatic viewpoint if the extraction is to follow very soon after cutting. The spectra in petroleum ether of all plant extracts both before and after chromatography are similar and in the latter case these closely resemble with that of β -carotene. Vitamin A potency of all plants has also been calculated.

Carotenoids, the fat-soluble pigments of plant and animal origin are of great biological importance due to their vitamin A potency. In addition, these pigments may provide exceptional and very desirable food colours which enhance the consumer acceptability of processed foods. This vitamin A potency coupled with their usefulness as attractive food colours, makes their determination both in foods and feeds of great practical and scientific importance.

Vitamin A deficiency found in certain sections of the the population of Pakistan as revealed by the national nutrition survey^{1,2} may be ameliorated by the intake of vitamin A rich foods such as fish liver oils and leafy vegetables which are rich sources of carotenes. Another way to improve vitamin A nutrition is to feed vitamin A or β -carotene-fortified foods. Vitamin A or β -carotene fortification of foods necessitates its production in sizeable quantities from chemical and vegetable sources.

Various workers³⁻⁵ have reported the carotene content of vegetables grown in India and Pakistan. Sadana and Ahmad⁶ determined the carotene content of common vegetables and assessed their vitamin A potency. Ali *et al.*7 reinvestigated the carotene content of some common vegetables in raw and cooked state. Their work had mainly been confined to vegetables and they had not estimated the carotene content of other green plants.

The aim of the present investigations is to determine the carotene content of some green plants (cultivated or wild) mainly used as animal feeds and to develop a process of producing carotenoids on large scale from the right vegetable source for their use in processed foods.

No attempt has been made to separate and characterise the individual carotenoids and they have been estimated as total carotenoids and carotenes in terms of all-trans β -carotene. The

vitamin A potency has also been calculated on the basis of total carotene content as all-trans β carotene because according to Booth⁸ the total carotene content is the usually accepted criterion of vitamin A value in most plant materials containing appreciable amounts of β -carotene.

Experimental

All the solvents used were of commercial grade. Alumina (Merck) was deactivated to such an extent as to allow only β -carotene or less polar compounds to pass through using petroleum ether as the eluent.

Beckman DB and Unicam Spectrophotometers were used for spectrophotometric studies.

Green plant samples were procured from cultivated as well as wild species. Grass samples were obtained from Nursery of Ranger's Improvement Scheme, Lahore, in the month of January. Samples of leguminous plants, wheat varieties and other plants were collected in February. Representative samples were obtained by chopping and thoroughly mixing the plants.

Extraction Procedure.—The procedure adopted. was essentially of Kemmerer and Fraps.9

The results calculated on the basis of fresh weight in whole figures have been given in Table 1 and spectra of lucerne extract have also been recorded in Fig. 1.

Carotenoid Content of Leaves and Stems of Some Leguminous Plants.—Leaves of fresh field-grown leguminous plants of similar growth were handpicked and mixed well. The stems were chopped and mixed thoroughly. Leaves and stems were extracted separately as described before. The results have been recorded in Table 2.

Effect of Blanching on the Carotenoid Content of Some Leguminous Plants.—The effect of blanching on the carotenoid content of leguminous plants had been studied and blanching was done in two ways.

1. By immersion in boiling water. Sample (10 g) was wrapped in muslin cloth, tied with a string and blanched by immersion in boiling water for 5 min.

2. Steam blanching. Sample (10 g) was wrapped as above, tied and suspended with a string in a pressure cooker and blanched by steam at atmospheric pressure for 5 min.

The blanched samples were extracted by the same procedure as described previously. The results have been recorded in Table 3.

Discussion

The carotenoid content of 30 plants of different families was estimated and the results have been recorded (Table 1) according to familes. The actual comparison of the carotenoid contents of various families seems rather difficult as the plants differ in maturity and age.

Table 1 will reveal that the first five plants of family Leguminosae are very rich in carotenoids and their carotenoid content varies from $175-295 \mu g/g$. Lucerne contains the maximum and Maina the minimum quantities of carotenoids. It may be mentioned that all of these four plants were of similar maturity from the second cutting.

In this family Rewari contains comparatively small quantity of carotenoids and peels of peas is the poorest source. It is interesting to note that although differences in carotenoids and carotene contents are quite significant, the %carotenes in total carotenoids is fairly uniform, (varying between 49–57). It may also be noted that although the carotenoid and carotene contents of Senji and Maina are less than those of lucerne, they contain higher % of carotenes than the former.

In case of family Graminae, varieties of wheat and grass are also rich in carotenoids. Among wheat varieties the variation in the carotenoid contents is from $98-257 \ \mu g/g$, Mexipak-red being the richest and C-591 being the poorest in carotenoids. These plants were also of almost similar maturity and were cut before earing. The colour of grains of these varieties varies from cream yellow to brownish and from this it would be attractive to speculate that the variation in colour is probably due to difference in their carotenoid contents.

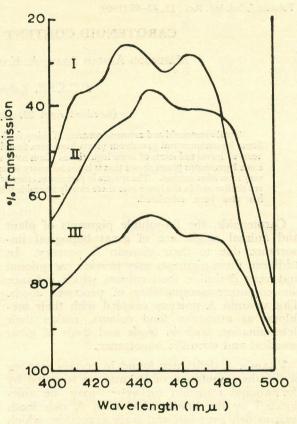


Fig. 1.—Spectral properties of lucerne extract in petroleum ether. I, before chromatography; II, after chromatography, and III, pure β -carotene.

This difference in carotenoid content is retained in their grains and the brownish colour of Mexipakred variety wheat is probably due to higher content of carotenoids as compared with other varieties. Barley and oats also contain appreciable amounts of carotenoids.

In grass varieties the carotenoid and carotene content varies from 48 to 210 μ g/g and 23 to 103 μ g/g, respectively. Dhamon has the highest and Dabbh the lowest quantities of carotenoids. It will be observed that all the plants of this family have fairly similar % of carotenes i.e. 48-52% of total carotenoids. Laily, carrot shoots, salt bush (Lana) and kashni have almost equal quantities of carotenoids and their carotenoid contents vary from 115 to 120 µg/g. The first three also contain almost equal quantities of carotenes $(70-73 \ \mu g/g)$ and % of carotenes (61-65%)but the first one has comparatively small quantity of carotenes $(52 \ \mu g/g)$ and % carotenes (45%). The carotenoid content of tara mera, shoots of onion and garlic varies from 87-98 µg/g and they roughly contain equal % of carotenes.

44

CAROTENOID CONTENT OF SOME GREEN PLANTS

Common name	Botanical name	Carotenc before chromat	after	Carotene percentage	Vitamin A* potency	
· · · · · · · · · · · · · · · · · · ·		graphy µg/g	graphy µg/g	(Arr	I.U./g	
		in the second	1. g	- A	Constant of	
	Family Leguminosae		к	1.1		
ucerne	Medicago sativa	295	150	51.0	250	
Berseem	Trifolium alexandrium	250		54.0	225	
Shaftal (Shatalah)	Trifolium resupinatum	223		57.0	210	
Senji	Melilotus parviflora	215		56.0	200	
Maina	Medicago denticulata	175		49.0	142	
Peas (Peels of mater)	Pisum sativum	14		inter a state of the second		
Rewari	Vicia sativa	108	38	33.0	63	
	Family Graminae		······	an an ang		
Wheat varieties	Triticum vulgare		1		odji zast	
Mexipak red		257		51.0	217	
Penjamo		240	123	51.0	205	
lerma rajo		236		52.0	203	
Mexipak white C -591		200		49.0	163	
L-591 Barley	Hordeum distichum	98 99		51.0 49.0	163 83	
Dats (Jai)	Avena sativa	12		52.0	108	
Grasses						
Chabbal grass	Cynodon dactylon	182	90	49.0	150	
Dhamon "	Cenchrus setigerus	210		49.0	171	
Garam ,,	Panicum virgatum	142		51.0	120	
Naru "	Sporobolus airoides	198	3 97	49.0	167	
Pahari jow		190		50.0	142	
Russian grass	Diplachne fusca	126		49.0	103	
Boolu "	Eragrostis bicolor	128		49.0	103	
Dabbh "	Eragrostis curvulis	41		48.0	38	
Pluan "	Bothriochloa intermedia	7	8 42	54.0	70	
	Family Cruciferae					
Cara mera	Eruca sativa	93	3 48	52.0	80	
	Family Convalvaceae			2.444 A	-	
					an an the Charles Stands An an Anna	
Laily	Convolvulus arvensis	120) 73	61.0	122	
	Family Compositae					
Kashni	Cinchorium intybus	11:	5 52	45.0	-87	
	Family Umbelliferae					
Carrot (shoots)	Daucus carota	118	3 72	61.0	120	
and a product of the	Family Amaryllidaceae			per ter ter t		
Onion (shoots)	Allium cepa	98	3 47	48.0	78	
Garlic (shoots)	Allium sativum	87	7 40	46.0	67	
	Family Chenopodiaceae					

TABLE I.—CAROTENOID CONTENTS OF VARIOUS GREEN PLANTS.

*0.6 μ g of β -carotene equals one international unit of vitamin A.

Name of plant	Leaves		% Canatana		Stem	% Carotene	Leaves to stem ratio	
	Α μg/g	B μg/g	Carotene	A µg/g	B µg/g	Carotene	A	B
Lucerne	410	203	50	160	65	41	2.6	3.1
Berseem	396 386	200	51	157	60	38	2.5	3.3
Shatalah Senji	386 380	195 192	51 51	155 145	57 52	37 36	2.5 2.6	$3 \cdot 4$ $3 \cdot 7$

TABLE 2.—CAROTENOID CONTENT OF LEAVES AND STEMS OF SOME LEGUMINOUS PLANTS.

A-Before chromatography.

B-After chromatography.

TABLE 3.—EFFECT OF BLANCHING ON THE CAROTENOID CONTENT OF SOME LEGUMINOUS PLANTS.

Name of plant	Treatment								
	Control		%	Water blanched		%	Steam blanched		%
	A	В		A	В	Carotenes –	А	В	Carotenes
	µg/g	µ/g		µg/g	µg/g		µg/g	µg/g	
Lucerne	295	150	51	296	152	51	298	152	51
Berseem	250	135	54	253	136	54	254	138	54
Shatalah	• 223	126	56	225	128.2	57	230	129	56
Senji	215	115	53	219	119.0	55	225	116	52

A-Carotenoids before chromatography. B-Carotenoids after chromatography.

Vitamin A potency of all the plants varies with their carotene contents and it has been calculated by dividing the latter with 0.6 as 0.6 µg of pure all-trans β -carotene is equivalent to one international unit of vitamin A.

Conclusions

It can safely be concluded from these studies that green fodders of family Leguminosae are the best sources for the commercial production of carotenoids.

Acknowledgement.—The authors wish to thank Dr. Khalid Mahmood Sheikh of Botany Department, University of the Panjab, Lahore, for his assistance in the classification of plants. Thanks are also due to Hoffmann LaRoche Co. Basel, Switzerland, for their generous gift of β-carotene. The authors are also grateful to Mr. M. Aslam, Director, West Regional Laboratories for his keen interest in the project.

References

Private communication, Directorate of Nutri-Ι. tion Survey and Research, Government of Pakistan, Nutrition Survey of East Pakistan.

- 2. Food Balance Sheets (1954-56) Average, Food and Agriculture Organization of the United Nations, Rome, Italy, 1958.
- N.K.De, Indian J. Med. Res., 23, 937 (1936). 3.
- N.K.De, Ibid, 24, 201 (1936). 4.
- B. Ahmad, D.N. Mullik and B.N. Mazum-5. dar, Indian J. Med. Res., 24, 801 (1937).
- J.C. Sadana and B. Ahmad, J. Sci. Ind. Res. 6. (India) **4B**, 47(1947). S.M. Ali, Pakistan. J. Sci., **15**(5),
- 204 7. (1963).
- V.H. Booth, Carotene, Its determination in 8. Biological Materials (W. Heffer and Sons, Cambridge, England 1940) pp. 24.
- A.R. Kemmerer and G.S. Fraps, Ind. Eng. 9. Chem., 15(12), 714 (1943).
- S.M. Hauge, J. Biol. Chem., 108, IO. 331 (1935).
- H.L. Mitchell and S.M. Hauge, J. Biol. II. Chem., 163, 7 (1946).
- S.M. Hauge and W. Aitkenhead, J. Biol. 12. Chem. 93, 657 (1931).