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An algebra of a class of nonlinear operators (more general than those of Hammer stein) acting within
the L2 space is developed. It is shown that the algebra is closed under the operations of "addition",
"scaler multiplication and product by composition".

Introduction

A modified Hammersteinl-? operator is defined as
N

AHx (t) = L: ( S ( Ks(t; T1,.. Ts)g(T1,X(Tr) ).
, s=o ) I )

g(TS'X('ts)) d't1' .d'ts, td
, " . (I.I)

.and a modified Uryson operator 1,2 is defined as
N

Ax (t) =L: [...(Us(t;T1 ... TS;xh);x('ts))
5=0 ) IS ) d't1 .. dTs tel (1.2)

It is clear that these two classes of operators re-
present a' direct extension of the more familiar
Hammerstein and Uryson operatorsdefined as

AHx(t) = ~I K(t,T)g(T, x(-r)) dT, td

and A x (t) = ) I U(t, T, X(T)) d-, td, respectively.

In the development of the algebra we will only
consider the modified Hammerstein operator
acting within the L2 space. For that it is essential
to study the continuity and boundedness pro-
perties of these operators.

Continuity and Boundedness of AH

To prove the continuity and boundedness of the
operator AH we make use of the following pro-
position. 3

Proposition 2. I.-If the operator G defined by
Gx( t )=g(t, x ( t)) maps every element X.L2
into an element in L2 then G is bounded and
continuous and the following inequality holds,

I g( t, u) I ~ I z ( t) I + ~I u I (2 . I)

for any u • R, z e L2 and ~e (0, co ).

We now present the following proposition on the
continuity and boundedness of AH•
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Proposition 2. 2.-If N ~co and the operator G
satisfy the conditions of proposition 2. I and the
set of kernels K; eL2 (Is + I) for each s and are
measurable in all the variables on IS+! then AH
acts within L2 and is therefore bounded and
continuous. Proof:

Let us rewrite the operator AH as

N

L: AHsX,
$==1

where

AHx (t) = ( ... ( «; (t, T1.:-t'S)ghX(T1,))·g(TS,X(TS)).
s ~ Is )

dT1 .. dTs td. (2.3)

By use of Holder's inequality+ in 2.3 we have, for
almost all, t • I

and since K, e L2 (Is+1) and it IS measurable in
t on I we have

Since, by proposition 2. I, the operator G satisfies
the inequality 2. I, and x £ U', it is easily proved
that

IIGxl1 ~ IIzll + ~Ilxll (2.6)

The proof of the last inequality follows from the
fact that [1.( I 110)=0, where [1. is the Lebesgue
measure on I and Io={teI: I x(t) I <co}.

By the use of Minkowski's inequality+ and the
inequalities 2.5 and 2.6 in 2.2 for N < co, we have

N

IIAHxlI ~ L: IIKsll (II z II+ !3l1xll)S
s=l
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This proves that AH acts within L2 and is there-
fore bounded. In this case the domain of the opera-
tor AH is the whole of L2 space. But if N = co,
then the operator AH is defined only on a closed
bounded subset D(AHl C Y, where

and R --------
s

lim -J IIs, II

dearly it is necessary that IIz II< R.

For the continuity of the operator AH we ob-
serve that

IIAHxr-AHx211:s:; L s IIKsl1(sup] Gxlll s-r IIGxr-Gx2!1
.<=1 x e Sr (2.8)

where

s, = {x e L2 : Ilxll:s:; r = R - ~Iz II }

The series 2.8 exists if 2 . 7 is assumed to be uni-
formly convergent '\;x e Sr. Thus the, continuity of
AH on Sr follows from that of G on L2. This com-
pletes the proof. '

Remarks.-If G is assumed to satisfy a Lipschitz
condition with a constant a> 0 for all teI, then
it can be shown that AH satisfies a Lipschitz condi-
tion with a factor a ( r ), where

a (r) = a L sllKsl1(11zll+ ~r)S-\
5=1

and

The Algebra

Let us denote by B(H,G,F ... ),a non-empty
set of continuous and compact operators of the
class AH acting on suitable closed'arid bounded
subsets of the space L2. H,G,F ... etc. are the
elements of B. Those algebraic properties of the
set B, which are most important for engineering
work, are stated here without making any attempt
at a rigorous proof.

It may be shown that B is an additive Abelian
"group. Let us define a map, <¥r: B X B--'!i>B by
1jIr(H,q )=H+G; i.e., <Jir assignsto-any two ele~
merits 6f B a new element which also belongs to
B. The closure property with respect to addition
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holds if, and only if,' the domain of the resultin~
opera tor R is defined as the in teresection of the
domains of Hand G;that is R is defined on a sub-
set D( R) of L~ such that

D(R) SD(H)nD(G)

and Rx=(H+G)x=Hx+Gx'\;x e D( R). It is

the second equality that requires proof.

Additive Closure.-Let Rr=H+G with H,G c B.
Then s, e E provided D( Rr) ~ D( H) n D( G).
In case Hand G both belong to EN C E, where BN
is defined as the set of all operators of type AH
consisting of finite series (i.e. N;; co ) only, then
D( Rr) is the whole of L2 space.

A2 Associativity.-R2=H+(G+F)=
(H+G )+F.

and n, eB provided D(R2)=D( H)nD (G)n
D (F).:

A3• -;;: HeB, .n , B, and D(H)=D(-H),

because'\;x eD( H), IIHxl1=II-Hxll.

A4. It can be proved that there exists a unique
null element cJ>e E such that for all xeL2 cJ>x=6,
where 6 is the null of the L2 space. By Ar' and
A3' H+(-H) e E, hence '\;X e D (H), Hx+(-~x)=
'Hx-Hx=6eL2. Since D(H) CL2, rpeB,'and
H+ cJ>=rp+H H, '\;HeB.

, This shows that Ii is an additive Abelian group.. ~ . .

We can define another operation on the set B.
Let us denote by F the field of real or complex
'numbers and let us define by h a map such that
'h: F X E--'!i>E by h (a,H)=a.H, vHeB arid V
a eF. The set B is closed with respect to, the
operation h, because '\;xeD( H), (a.H )x='a.H~
and . II(a.H)x II= I a I IIHx II· '

Therefore a.Hell vHeB and yaeF and D(a.H)=
(D (H). It is easily verified that with respect
to this operation, the following relations hold, true.

As' a. (G+F )=a:G.+a.F vG, FeE and V aeF'
with, D(a.G+a.F )=D( G) n D (F) )'~ '.

A6. (a+b) .G=a. G+b.G.YGeB and Va; be,F;
with D ((a+b) .G ))=D ( G). '

A7• a.(b.G )=(a.b).G VGeB and Va,b «F with
D( (a.b).G ), D( G).

:As. I.H E, yHeB and I eFc >



We can also define an equivalence relation
on the set B such that

" "c:::
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H+Gc:::H+F--+Gc:::F \jH, G,FeB and
that D( G )=D( F) and \jxeD( G), Gx=Fx.
This equality must be understood in the sense of
the norm of the space L2.

For example, in the case of volterra-Frechet
operators 1,5 two operators are equivalent if, and
only if, each of the corresponding kernels are
pairwise equivalent in the L2 sense.

Let G and F both belong to B and let

Gx= = (...\Ks(t; 't'I' ••rs ) X('l"I)"'X('l"s)
s=o ) Is )

d'l"I· .. d'l"S
with tel and «,» ( G )

and

Fx= = (...(t.; (t; 'l"I""'S)X('l"I)"'X('l"s)
s=o ) Is )

d 't'I'" d'l"s
with tel and xeD(F),

then for G to be equivalent to F it is necessary and
sufficient that D( G )=D( F) and that Ks=
L, a.e. on IH 1 for each s=o, I ,2 ...

In the case of operators of type AH' the equivale-
nce relation is not so straightforward.

In case, Ks=Ls a.e. on IS+I for all S=0,1,2 ...
then g must be equal to f for all x e L2 and for
almost all t eI. Conversely, if g j, \jx eL2 and
almost all i e I, then for the equivalence of the
corresponding operators it is necessary and suffi-
cient that Ks=Ls a.e. on 15+1 for each s. How-
ever, it is important to note that an operator G
could be equivalent to an operator F, both belong-
ing to the class AH' without actually any of the
kernels of G being equivalent to any of the corres-
ponding kernels of F. This is simply due to the
presence of the operators g and j.

All the relations AI-As resulting from the two
operations <h and <h defined on Bare precisely
the postulates ofa linear vector space in which an
equivalence relation "c=" is also defined. Thus
B(H,G,F, ... h, <jJz, c=, cp) is a linear vector space
whose elements are the set of all continuous
bounded nonlinear operators defined on suitable
subsets of the space L2.

Another important operation that can be de-
fined on the set B is "the product by composition".

Let Hand G e B, and let tJ!3: B X B-+ B be defined as
.y3(H,G )=HOG=R3

so that

R3x=(HOG)x=H(Gx), 'Vx s D(R3)

where D(R3) S.D(G) n {x,x zD(G) : Gx e D( H)}.

Thus, B is closed with respect to this operation
provided D(R3) is chosen as defined above. We
note the following properties of the set B with
respect to the operation tJ!3:

A9: \jH,G eB, HOG eB

with D(HOG)=D(G) n {x,xeD( G): Gx e D( H)}

AIo \jH,G,F «B

HO(GOF)=(HOG) OF=HOGOF

with D(HOGOF)=D(F) n {x,x e D(F) :FxeD( G)}
n{x,x D( F) : (GOF)xeD( H)

In general, the set B does not satisfy the left dis-
tributivity property but it does satisfy the right
distributivity.

AIl HO(G+F)=t=.HOG+HOF

The equality holds only when His liCear.

AI2 (G+F)OH GOH+FOH
with D( (G+F)OH)=D(GOH)nD(FOH)
=D(H)n{x,xeD(H) : HxeD(G)}
n{x,xeD( H) : HxeD( F )}. With res ect to the
operation tJ!3' B is a semigroup and it would be a
ring if AIl were true. We note that the set of
all bounded linear operators defined on any
Banach space forms a ,ring, whichmakes the study
of linear operators comparatively simpler.

With respect to the operation tJ!3' we may define
an identy element 1 by,

HOl IOH H

so that

(HOI)x=(10H)x=Hx 'Vx -o; H)
with this new element included, B is an algebra
closed under the operations of addition, multipli-
cation by scalers, and product by composition.
This algebra may now be denoted by B( H,F,G, .. ,
.yo <jJz, 1jJ3' C=, cp,I), .yo h, tJ!3 are the opera-
tions as defined "c=" is a relation, and cp and 1
are the two special elements of B. In this algebra
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TABLE OF D(HOG).

D ( G ) nD ( H) = cpG D( G )=D (H)

Reducing
,GD( G) cD( G)
Expanding
GD( G ):l D ( G)
GD( G )=D( G)

D(GpD(H)

D( G ):l
D(HOG)2D( H)

D(HOG) cD( H)
D(HOG )=D( H)

D(HOG)=D( H)

D(HOG) cD( H)
D(HOG)=D ( H)

D (G)CD (H)

D(HOG )=D( G)

D(HOG) SD( G)
D( (HOG )=D( G)

the cancellation law does not hold since HOGc:=.
HOF does not imply that Gc:=.F. This is true
even in the case of linear operators. Therefore,
the element I may not be unique. Also there may
not exist inverses for the element of B since _v=Hx,
may not have a solution for x, for an arbitrary
y & L2.

An important point associated with the opera-
tion <¥3' defined on B, is the domain of the com-
bined operator HOG for all Hand Gin B. The
entries in the above table indicate the domain
of the operator HOG. It will be clear that
D(HOG) is a function of the domains of the in-
.dividual operators and the nature of the leading
operator G.

The situation represented by the last column
·of the table may arise in case the zeroth order
terms in our operators are present and are not
identical.

Conclusion

In this paper the author has made an attempt
to study the algebraic structure of an important
class of operators. Some important fundamental
properties of the totality B of all these operators
have been presented. Special emphasis has been
placed on the correct specification of the domain
-ofany combination of elements of the set B. The
need of this emphasis is felt immediately in the
-case of strong nonlinearities. An immediate
application of this algebra can be found in the
systems engineering.

It must be noted that the algebra developed in
this paper assumes the ordinary continuity in the
sense that each of the elements of the set B trans-
forms every strongly convergent sequence into a
'Strongly convergent one. This, however, is a
strong restriction. The use of such concepts as

weak continuity, weak lower and weak upper
semicontinuities may lead to a weaker algebra.

The assumption of any of the Lp spaces as the
domains of the operators also places a restriction
on the strength of nonlinearity that can be handled.
Strong nonlinearities can be handled, if the spaces
on which the operators act is taken to be a suitable
Orlicz space, which is a generalization of the LP
spaces.
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