DIFFUSIVE SEPARATION IN THE UPPER ATMOSPHERE

ABDUL MAJID

Pakistan Space and Upper Atmosphere Research Committee, Karachi

(Received May 1. 1967)

Density and temperature measurements with magnetic mass spectrometer taken at two Aerobee flights have been analysed and interpreted using the equation for diffusive equilibrium. It is found that 0(16) is in diffusive equilibrium starting from 130 km, whereas $N_2(28)$ and $O_2(32)$ from 110-115 km. The temperature measurements compare with the theoretical values very nicely within 1%.

Introduction

Neutral gas constituent measurements have been made on two Aerobee flights with magnetic mass spectrometers. Detailed data analysis has been given by Hedin *et al."* for density and temperature measurements. The above analysis showed a more rapid decrease in densities of the heavier constituents with altitude, which is in -qualitative agreement with expectations if the particles are in diffusive equilibrium.

However, there had been no attempt to see whether the individual constituents are in diffusive equilibrium at sufficient altitudes. In this paper the author has shown that N_2 is in diffusive equilibrium at 115 km while O_2 at 110 km and O at 130 km.

Technique and Discussion

Neutral density *n* is related to the density scale height H_n as

$$
n = n_0 e - \mathcal{Z}/H_n \tag{1}
$$

when n_0 refers at $z=0$, *Z,* being the altitude. *H«* IS related to scale height *H,* as

$$
H=H_n\left(1+\beta\right)=\frac{KT}{mg}\tag{2}
$$

where $\beta = dH/d\mathcal{Z}$ is scale height gradient. Taking the experimental value of n for N_2 , H is calculated from (I) and (2) . A mean value of *H* is found at 160 km, from the fact that it gives the best agreement with the values found by Hedin $et \ al.^T$ Corresponding value of β is taken as a mean constant value. A mean value of *"g"* is taken from 110-205 km.

For an atmosphere in diffusive equilibrium with constant scale height gradient, nand *H* are related $as - (1+\beta)/\beta$

$$
\frac{n}{n_{\rm o}} = \left(\frac{H}{H_{\rm o}}\right) \tag{3}
$$

where n_0 and H_0 refer to 160 km.

H can also be defined as
\n
$$
H = \beta(\zeta - \zeta_0) + H_0 \tag{4}
$$

Knowing H_0 , $(\zeta - \zeta_0)$ and β , we can find *H* corresponding to any altitude, and hence *n.*

Using H_0 for $N_2(28)$ H_0 is calculated from (2) for $O_2(32)$ and $O(16)$. Figure I gives us the density variations with altitude for N_2 , O_2 from both the flights.

The agreement between the theoretical and experimental curves is very good (Fig. I), though

237 .

Hedin *et al.¹* have shown an error of 5% in density measurements.

TABLE 2. $-O(16)$ $\beta = .46$ Altitude H *n* n_{measured} n/n_{measured} 110 115 120 125 130 135 140 145 150 155 160 165 170 175 J80 185 190 195 10.6 12.9 15.2 17.5 19.8 22.1 24.4 26.7 29.0 31.3 33.6 35.9 38.2 40.5 42.8 45.1 47.4 49.7 $1.71 + 11$ $8.7 + 10$ 5.1 3.27 2.16 1.53 1.11 $8.35 + 9$ 6.51 5.20 4.20 3.40 2.90 2.35 2.05 1.72 1.43 1.26 $1.05 + 11$ $6.40 + 10$ 4.20 2.80 2.05 1.48 1.10 $8.40 +$ 6.60 5.20 4.20 3.40 2.85 2.40 2.05 1.80 1.60 1.38 1.62 1.35 1.21 1.16 1.05 1.05 1.01 .99 .99 1.00 1.00 1.00 1.00 .98 1.00 .96 .90 .91

Figure 2 is a plot between the ratio of observed *n* and calculated *n* against height. All the constituents are in diffusive equilibrium between

110	10.6	$1.71 + 11$	$1.05 + 11$	1.62
115	12.9	$8.7 + 10$	$6.40 + 10$	1.35
120	15.2	5.1	4.20	1.21
125	17.5	3.27	2.80	1.16
130	19.8	2.16	2.05	1.05
135	22.1	1.53	1.48	1.05
140	24.4	1.11	1.10	1.01
145	26.7	$8.35 + 9$	$8.40 + 9$.99
150	29.0	6.51	6.60	.99
155	31.3	5.20	5.20	1.00
160	33.6	4.20	4.20	1.00
165	35.9	3.40	3.40	1.00
170	38.2	2.90	2.85	1.00
175	40.5	2.35	2.40	.98
180	42.8	2.05	2.05	1.00
185	45.1	1.72	1.80	.96
190	47.4	1.43	1.60	.90
195	49.7	1.26	1.38	.91
200	52.0	1.05	1.22	.88
205	54.3	$9.24 + 8$	1.10	.84

TABLE $3 - O_2(32)$ $\beta = .19$

 $9.00 +$

 $9.70+$

205

29.1

TABLE 4. $-N_2(28)$ $\beta = .14$ Wallop's Island April 18, 1963

238

130-200 km (within allowable errors). The maximum discrepancy is in $O(16)$ value with maximum divergence of $10-15\%$ from the diffusiv equilibrium. The deviations of O_2 and O fron diffusive seperation can be due to the errors involved in: (i) the actual measurements of the constituents, (ii) computational errors due to the technique used, and (iii) uncertainty in laboratory calibration of the mass spectrometer.

Acknowledgement.-The author is grateful to Dr. Z.A. Ansari and Dr. M.S. Ahmad of

SUPARCO for their helpful discussions and suggestions in the preparation of this paper. He is also indebted to Dr. I.H. Usmani, Co-Chairm SUPARCO, for permitting the author to publish this paper.

References

- 1. A.E. Hedin, C.P. Avery and C.D. Tschetter, J. Geophys. Res., 69 (21), 4637 (1964).
- 2. N.W. Spencer *et al.,* J. Geophys. Res., **70** $(11), 2665 (1965).$

sha tungim shliptar tarik manja 1933 a tak

