STUDIES ON THE TENSILE CHARACTERISTICS OF THE LOHI WOOL

Arbab Abdul Wakil and (Miss) Mumtaz Fatima

North Regional Laboratories, Pakistan Council of Scientific and Industrial Research, Peshawar

(Received August 9, 1963; revised April 7, 1965)

Studies have been made on various samples of Lohi wool collected from the home tract of the breed. It has been tested for diameter, breaking strength, elongation and subsequently stress, tenacity and tensile strength have been calculated. The tensile properties of True, Heterotypical and Medullated wool have also been compared with that of Kaghani, Hashtnagri and Harnai wool.

Introduction

It has been found necessary ^I to find out the tensile characteristics which are important factors in the finished product of all types of wool existing in West Pakistan. Wakil and Amir²,³ while working on Kaghani and Harnai wool for tensile characteristics have pointed out that it can be used for the manufacture of medium to low quality cloth from the strength point of view. Mumtaz 4 in this respect has also worked on Hashtnagri wool. The present paper deals with the tensile properties of Lohi wool. For this purpose three types of wool fibres i.e., True, Heterotypical and Medullated of 40 Lohi wool samples collected from Lyallpur, Multan and Montgomery (where 5.5 million sheep,5 yielding 4-5 lbs. of wool/sheep annually are found) have been tested for breaking strength, elongation and subsequently the stress, tenacity and tensile strength have been calculated. The co-efficient of variation of diameter, elongation and breaking-strength of Lohi wool have been compared with the three breeds already tested. The relation between diameter and breaking strength, and diameter and stress of three types of wool fibres was also studied. The strength testing was carried out on a single fibre testing machine, while diameter was measured on prokempy jection microscope (Lanameter). As fibres are very scarce in all the samples tested, these are not included.

Experimental

1. Medullation.—The representative samples from Lohi wool samples were cut down ⁶ to 1", 2" and 3" length and weighed .03 g., .06 g. and .09 g., respectively. Each such sample was sorted out for True, Heterotypical and Medullated wool fibres with the help of benzene test.

2. Dynamometric Measurements.—A Schopper dynamometric apparatus with clamps 1 cm. apart and a pre-tension of 500 mg. weight was used. The length of the fibre between the two clamps of the hydraulic type single fibre testing machine was adjusted accordingly. The flow of water was maintained in such a way that the time to break the fibre was at least 20 seconds. The breaking strength and elongation were recorded from the dynamometric and elongation scales, respectively.

3. Measurement of Diameter.—Total number of each types of fibres, which have been tested for breaking strength, were tested for mean diameter (after cutting them disectionally as a whole) with projection microscope (Lanameter) The disectional cut fibres were aligned on a slide covered by a cover slip which was secured by glycerine. The magnification of the Lanameter was $\times 500$.

Calculation.—The Stress, tenacity and tensile strength from breaking strength were calculated as follows:

Stress = breaking force in mg.wt./cross sectional area $in\mu^2$.

$$\underline{-\frac{\text{mg. wt.}}{\pi r^2}}$$

where r = radius of the fibre in μ .

Tensile strength (psi)=g./denier \times 12800 \times sp. gravity.

Where g./denier == breaking strength in g./ (Tenacity) $gooooo \times area of cross section$ in $cm^2 \times density$.

Discussion

From graphs showing the relation between the diameter and breaking strength of True, Heterotypical and Medullated wool fibres (Fig. 1), in all the cases a straight line has been obtained which is also clear from the Tables 1,2,3,4 and 5 In case of diameter and breaking stress of True, Heterotypical and Medullated wool, (Fig. 3) a regular graph has been obtained, in which the breaking stress decreases as the diameter increases. The stress at the diameter of 22μ (True wool) has been shown at maximum while at 89μ (Medullated wool) it is minimum. The graphs between stress and elongation % (Fig. 2) of True,

Heterotypical and Medullated wool fibres show that elongation in % increases as the stress decreases.

Comparing the tensile properties of Lohi breed with the other breeds, it was established that the percentage elongation of True, Heterotypical

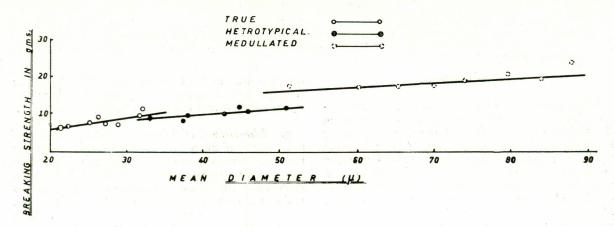


Fig. 1.—Showing relationship between the breaking stress and diameter (mean) of True, Heterotypical and Medullated wool fibres.

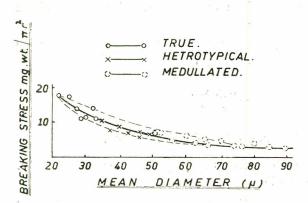


Fig. 2.—Showing relationship between breaking stress and mean diameter of True, Heterotypical and Medullated wool fibres

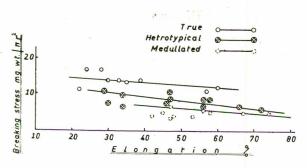


Fig. 3.—Showing relationship between the breaking stress and elongation % of True, Heterotypical and medullated wool fibres.

TABLE I.—ELONGATION DISTRIBUTION OF TRUE, HETEROTYPICAL AND MEDULLATED LOHI WOOL FIBRE AT 55% RELATIVE HUMIDITY AND AT 47.3° F.

El	ongation	True %	Hetero- typical %	Medul- lated %
1	10-15	4.92		
	16—21	11.16	3.43	.26
	22-27	. 9.24	7.47	I.74
	28-33	16.56	10.28	7.24
	34—39	13.26	13.08	9.53
	40-45	15.78	20.87	12.88
	46-51	8.49	9.04	13.28
	52-57	11.93	8.43	22.55
	58-63	7.61	7.47	12.22
	64—69	1.05	8.09	9.53
	70-75		9.19	7.13
	76—81		2.65	3.64

Total No. of fibres=2400

Load in g.	True %	Hetero- typical %	Medullat- ed %
0—1.9	1.26		
2-3.9	11.84	I.3	· · · ·
4-5.9	27.24	11.06	
6-7.9	24.13	17.14	. 30
8-9.9	13.54	16.26	1.64
10-11.9	9.87	20.78	6.25
12-13.9	5.36	8.44	6.74
14-15.9	3.24	6.39	13.50
16—17.9	1.83	5.24	14.54
18—19.9	1.26	3.93	8.84
20-21.9	•43	6.25	10.94
22-23.9	-	2.18	8.24
24-25.9	1	1.16	7.20
26-27.9	-	•44	5.35
28-29.9		.29	7.79
30-31.9	-	.14	7.34
32-33.9		2.17	·74
$34 - 35 \cdot 9$			·59
tal No. of fibres= d Medullated eater while th	l wool (T e breaking	strength i nean diam	is less than eter of Lohi
at of three brea ue wool fibres ameter of Hash d 25.2µ, respontage of True ool of Lohi brea ashtnagri wool.	tnagri True ectively. F , Heteroty ed agrees m	e wool fibre urthermore pical and	es i.e., 26.8µ e, the per- Medullated

STUDIES ON THE TENSILE CHARACTERISTICS OF THE LOHI WOOL

3.-1

TABLE 2.-LOAD DISTRIBUTION OF TRUE. HETEROTYPICAL AND MEDULLATED LOHI WOOL FIBRES.

Conclusion

TABLE S The percentage elongation of True, Heterotypical and Medullated wool fibres of Lohi breed was found greater while the breaking strength was less than that of the three breeds already tested.

Mean diameter	No. of fibres for	Breaking strength of	rength of	Flowertic	0/	Stress	Tenac	Tenacity g./	Tensile Stre-
fibre in μ .	dle strength.	Single fibre g. Bundle in kg.	Bundle in kg.	Elougation III 70	0/ 111 11	mg. wt.	. der	nier	ngur kg./ cm ² .
21.2	500	6.1	3.00	48		17.4		1.7	2083
22.4	635	6.9	4.38	35		12.8		1.9	2141
24.6	96	10.3	.98	34		21.7		2.1	2497
25.0	282	6.2	2.20	33		13.4		.7	788
25.0	87	8.2	.72	24		16.9		1.7	2083
25.2	344	5.5	I.89	22		0.11		00.I	1296
26.2	78	9.2	.80	28		16.9		1.6	1896
27.2	460	7.7	3.50	30		13.2		I.3	1480
28.8	601	7.1	17.	58		10.9		I.0	1188
29.4	125	7.4	.92	57		10.9		C0.1	1249
29.6	56	7.8	.39	60		11.3		I.I	1308
31.6	78	9.7	. 75	53		18.7		Ι.Ι	1308
32.0	200	11.15	2.23	39		13.8		I.2	1352
Mean Diameter=26.8	Mean Diameter= 26.8μ (800 measurements).							-	
Co-efficient of co-relation between Fineness and tensile strength	tion between fineness and ength	fineness and breaking strength	::	:::	::		= .018 = -650	2"	06 g.
Å iteliori		**	:				the'T		

ARBAB ABDUL WAKIL AND (MISS) MUMTAZ FATIMA

TABLE 4.—SINGLE FIBRE MEAN DIAMETER, BREAKIN	G STRENGTH, ELONGATION %, STRESS, TENACITY									
AND TENSILE STRENGTH OF LOHI HETEROTYPICAL	WOOL FIBRES AND CALCULATED VALUES OF									
BUNDLE STRENGTH IN KG.										

	No. of fibres	Breaking	strength of	El	C	Tomation	Transila
Mean diameter of a fibre in μ .	for calcula- ting bundle strength	Single fibre g.	Bundle in kg.	Elonga- tion %	$\frac{\text{Stress}}{\pi \text{ r}^2}$	Tenacity g./ denier	Tensile Strength kg./cm ²
33.0	56	9.05	. 50	29	10.5	1.05	1250
34.6	76	13.70	1.04	47	14.5	1.40	1645
37.3	107	8.2	.82	46	$7 \cdot 4$.77	999
37.6	167	10.8	1.80	34	9.7	I.00	1198
38.2	182	9.6	I.40	56	8.4	.91	1081
39.8	16	10.2	. 16	58	8.2	. 12	1094
42.8	80	10.0	.80	66	6.9	.99	1128
44.8	48	11.9	·57	30	7.5	I.10	1308
46.0	40	10.6	.42	34	6.3	.80	1041
46.4	182	14.2	2.58	47	8.9	1.30	1480
47.6	184	16.7	3.00	50	16.1	1.50	1857
48.8	58	19.3	I.II	47	10.3	1.70	2083
49.0	95	7.0	.66	56	6.2	.66	785
50.8	38	11.5	.43	72	5.6	.98	1161

Co-efficient of co-	-relation bet	ween finen	ess and bre	aking strengt	h	 	1″	 .03 g.
Fineness and tensi				· ·		 = .380	2″	 .06 g.
Density	· · · ·					 =1.172	3"	 .09 g.

Table 5.—Single Fibre Mean Diameter, Breaking Strength, Elongation%, Stress Tenacity and Tensile Strength of Lohi Medullated Wool Fibres and Calculated Value of Bundle Strength in Kg.

	No. of fibres	Breaking	strength of	Flores	Strong	Tenecity	Topsila
Mean diameter of a fibre in μ .	for calculat- ing bundle strength	Single fibre g.	Bundle in kg.	Elonga- tion %	Stress mg. wt. π r ²	Tenacity g./ denier	Tensile strength kg./cm ²
51.2	140	17.9	.89	47	8.7	.85	1011
56.0	158	12.1	.82	45	4.9	.57	678
60.1	136	17.3	2.35		6.I	. 58	689
62.6	236	13.5	3.10	$\substack{47\\67}$	$4 \cdot 3$.43	511
64.0	67	23.6	1.50	72	10.1	.75	892
65.4	345	17.5	5.90	56	5.1	· 54	641
70.0	250	17.6	4.40	58	4.6	. 56	666
74.0	127	19.0	2.41	48	3.5	·45	535
76.6	54	15.2	0.82	42	3.4	. 36	428
79.6	53	21.0	I.IO	74	$4 \cdot 3$.50	594
84.0	125	19.5	2.43	53	3.5	.30	417
88.0	88	24.I	2.12	53	3.9	. 38	451
89.0	98	18.7	1.83	37	3.0	.29	345

Mean Diameter = 66.8μ (800 measurements)

Wieam L/Tameter	-00.0 µ (000	measuren	(cincs)					Bundl	e size		
Co-efficient of c	o-relation betw	veen finen	ess and brea	king strength			= .304	1″		.03 g	
Fineness and ten	sile strength						=.550	2″		.06 g	
Density	• •			• • *	••	••	=1.160	3"	-	.09 g	5-

Studies on the Tensile Characteristics of the Lohi Wool

TABLE 6.—MEAN VALUES OF DIAMETER, BREAKING STRENGTH, STRESS, TENSILE STRENGTH AND THEIR CORRESPONDING STANDARD DEVIATION OF TRUE, HETEROTYPICAL AND MEDULLATED WOOL FIBRES.

	¥.	Mean V	alues of			Standard	Deviation	
Types of fibres	Diame- ter μ.	Breaking strength g.	$\frac{\text{Stress}}{\text{mg. wt.}}$	Tensile strength kg./cm ²	Diame- ter µ.	Breaking strength g.	$\frac{\text{Stress}}{\frac{\text{mg. wt.}}{\mu^2}}$	Tensile strength kg./cm ² .
True Hete- rotypical Medullated	139.8	7.4 10.6 19.0	13.2 10.3 5.5	1480 1272 717	2.9 6.7 10.7	$2.5 \\ 3.9 \\ 4.6$	6.6 7.2 2.2	719 259 419

TABLE 7 (a).—MEAN VALUE OF FIBRE DIAMETER.

			Tru	ie	Heterot	typical	Medu	llated
Breed			Diameter	C. of V. %	Diameter µ	C. of V. %	Diamerer µ	C. of V. %
 Kaghani			29.9	7.5	40.0	10.2	57.0	18.9
Hashtnagri			25.2	11.9	40.5	9.3	51.8	12.5
Harnai			28.7	11.7	45.1	9.1	75.2	15.3
Lohi	••	••	26.8	10.9	39.8	16.8	66.8	16.1

TABLE 7 (b).-MEAN VALUE OF FIBRE ELONGATION

		Tru	e	Heteroty	pical	Medul	lated
Breed		Elongation %	C. of V %	Elongation %	C. of V. %	Elongation %	C. of V. %
Kaghani	· · · ·	 34.0	17.9	41.0	8.8	49.0	6.7
Hashtnagri		 28.0	13.9	29.0	II.2	31.0	9.3
Harnai		 31.0	14.8	26.0	31.1	28.1	19.2
Lohi		 40.0	$3^{2} \cdot 5$	48.0	26.2	54.0	20.0

TABLE 7 (C).—MEAN VALUE OF FIBRE STRENGTH.

		Tr	ue	Hetero	typical	Medu	llated
Breed		Breaking strength g.	C. of V.	Breaking strength g.	C. of V. %	Breaking strength g.	C. of V. %
Kaghani	 	16.4	9.I	21.6	9.4	29.9	7.7
Hashtnagri	 	8.3	20.5	20.2	19.3	31.3	7.7
Harnai	 	8.2	20.7	23.2	17.2	30.2	7.6
Lohi	 	7.4	$34 \cdot 3$	10.6	37.2	19.0	23.3

TABLE 8.—PERCENTAGE COMPOSITION OF TRUE, HETEROTYPICAL AND MEDULLATED KAGHANI, HASHTNAGRI, HARNAI AND LOHI WOOL FIBRES.

Breed	Types of fibres as percentage of total fibres			
	C	True %	Hetero- typical %	Medul- lated %
Kaghani		60	22	18
Hashtnagri		54	25	21
Harnai		55	27	18
Lohi		53	20	27

The percentage of true wool fibre agrees with that of true wool fibre in Hashtnagri breed, that has already been standardized for carpet.

Acknowledgement.-Thanks are due to Dr. S. A. Warsi, Director, North Regional Laboratories, P.C.S.I.R., Peshawar, for his keen interest and encouragement in the problem. The authos are also grateful to Mr. Amir Muhammad and Mian Taj Younus, Senior Laboratory Assistants of Wool Research Division for helping in some of the experimental work and calculation.

References

- I. E. B. Grover and D. S. Hamby, Hand Book of Textile Testing and Quality Controls (Textile Book Publishers, New York, 1960), p. 187.
- A. A. Wakil and Amir Muhammad, Pakistan 2. J. Sci. Ind. Res., 6, 13 (1963).
- A. A. Wakil and Amir Muhammad, Science 3. and Industry 1, 237 (1963).
- Mumtaz Ahmad, Pakistan. J. Sci. Ind. 4. Res., **6**, 8 (1963). A. A. Wakil, Science and Industry, **1**, **1**
- 5. (1963).
- W. V. Bergen and H. R. Mauersbergen, 6. American Wool Hand Book (Textile Book Publishers, Inc., New York, 1948), pp. 142-145.