PAKISTAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH

Vol. 8, No. 2

April 1965

INVESTIGATION OF THE CHARACTER OF SOME OF THE JUMPS IN ACTIVATION ENERGY OF VISCOUS FLOW IN PURE LIQUIDS AND SOLUTIONS

Part I.—Some Measurements at Small Thermal Intervals on (a) Dilute Aqueous Alcohol (11%) and (b) Pure Water

M. M. QURASHI

Defence, Science Organization, Ministry of Defence, Government of Pakistan, Karachi

AND

TAYEB M. QURESHI

Physics Division, Central Laboratories, Pakistan Council of Scientific and Industrial Research, Karachi

(Received October 20, 1964)

The occurrence of sharp jumps (of magnitude of the order of 5%) in the activation energy of viscous flow Eq, for several pure liquids and solutions is now well-established. A preliminary attempt has also been made to apply order disorder phenomena to estimate specific heat anomalies expected to be associated with any second-order transitions at these jumps. Examination of temperature variations of (1) coefficient of dilatation and (2) index of refraction have supported the existence of some type of changes occurring at the temperatures of these jumps, and the present communication gives a further study of the nature of these jumps by remeasuring typical steps in 11% dilute aqueous ethyl alcohol and in water at the much closer intervals of 0.5 C. and 0.2°C., with improved experimental technique.

For 11 % aqueous alcohol, the measurements give temperature ranges of $0.19^{\circ}\pm0.03^{\circ}$ C. for the jumps, which is almost equal to the smallest temperature interval (0.2°C.) used. Similar measurements for water give an average of 0.16°C. for the widths of the jumps. The conclusion is drawn that these widths are entirely due to the experimental interval and because $\delta T/Tc$ is less than 1/1000 in this case, therefore, for practical purposes, these jumps may be considered as *discontinuous* changes in activation energy Eq.

Introduction

A series of accurate experiments carried out over a period of five years by Qurashi and various co-workers 1-4 (Rauf and Qurashi, 1959; Qurashi and Ahsanullah, 1961; Ahsanullah and Qurashi, 1962: Ahsanullah, Ali and Qurashi, 1962) have established the occurrence of a series of sharp jumps in the activation energy of viscous flow of several pure liquids as well as simple solutions. The magnitude of these jumps is of the order of 0.1 unit of $(E_{\eta}/R)/1000$, i.e. about 200 cal./mole in E_{η} , while the standard deviations of the experimentally measured values are approximately one-twentieth to one-tenth of these. In an effort to develop the theoretical implications of these experiments, a preliminary attempt was also made to apply the theories of order disorder phenomena 5 to these jumps, and thereby to estimate the magnitude of specific-heat anomalies to be expected on the basis of a "second-order transition" at each jump.

Lately, it has been possible in this laboratory to examine accurately the temperature variation of (1) coefficient of dilatation and (2) refractive index, for water, ethylene glycol and aqueous alcohol. These preliminary investigations have supported the existence of changes of some sort at the temperatures of the jumps in E_{η} , and have indicated that the transitions might well be of the "third order", i.e. correspond to discontinuities in the *third derivatives* of the Gibbs Function.

Analysis of Previous Data

Inorder to throw further light on this, it was considered worthwhile to examine more closely the character of the jumps in activation energy itself. Thus, for example, Fig. 1(a) reproduced from an earlier paper,⁶ dealing with aqueous alcohol solutions containing 2.5% to 30% alcohol, shows a plot of careful overlapping measurements with $\Delta T = 1^{\circ}C$. on 20.2% alcohol solution in the range of 32°C. to 41°C. Four resettings, differing by 1.3°C. each, of the Beckmann thermometer were made, and the different symbols indicate

Fig. 1 (a).—Reproduction of graph of an earlier experiment for 20.2% alcohal performed with overlaping measurements, using $\Delta T = 1^{\circ}$ C. Four resettings of Backmann thermometer differing by 1.3°C. in the range of 32 to 41°C. were made, and the different symbols indicate different settings. (b).—The plot of 11% alcohal (solid and hollow circles)

(b).—The plot of 11% alcohal (solid and hollow circles) shows two different experiments now performed with the interval of 0.5° C.; the jump occurs at $40.9\pm0.3^{\circ}$ C. in a range of 0.6° C.

values of (E/R)/1000 obtained with different settings. The two steps at 35° and 38°C. are both seen to occur over an interval of I.I°C. A statistical analysis of the data on some 60 steps, observed from about 300 experimental points at $\Delta T = I^{\circ}C$. with various dilute alcohol solutions, shows that only 15 experimental points lie on the sloping part of a jump, thus confirming that the apparent spread of the sloping part is less than $15/60 \times \text{mean}$ interval between jumps, i.e. $15/60 \times 5^{\circ}C.=1.2^{\circ}C.$ The present communication gives an account of a remeasurement of this activation energy at intervals of 0.5° C. and 0.2° C. in regions of 3° -8°C. including up to three separate jumps for (a) some dilute aqueous alcohol solutions and (b) pure re-distilled water.

Experimental Technique

 E_{η}/R is obtained from the differential method developed in this laboratory, ^{1,2} and based on differentiation of Andrade Equation, viz.

$$\begin{split} & E\eta/R \Longrightarrow \Delta \ln \eta/\Delta \ (1/T) \\ & = -T^2 \Delta \ln \eta/\Delta T \end{split}$$
(1)

where T is absolute temperature. Equation (1) gives the mean slope of $\ln\eta$ versus 1/T curve in a small temperature interval T and T+ Δ T. The previously reported work on pure liquids and solutions, such as water, ethylene glycol and aqueous ethyl alcohol, etc., has clearly justified the superiority of our technique. The experimental procedure in the present series is to find with a high degree of precision the Kinematic viscosity at more close intervals, Δ T, namely 0.5°C. and 0.2° C. with a carefully calibrated differential Beckmann Thermometer, and thence to evaluate E/R by equation (1). It is to be noted that

$$\begin{aligned} & E_{\eta}/R = -T^2 \Delta \ln (\nu \times \rho) / \Delta T \\ & = -T^2 \Delta \ln \nu / \Delta T - T^2 (\Delta \rho / \Delta T) / \rho \\ & = E_{\nu}/R + T^2 \rho \end{aligned}$$

where $T^{2\beta}$ is a small varying correction term. We have generally given only E_{ν}/R directly, and some values of the term $T^{2\beta}$ are given in the bottom of some Tables.

The measurements were carried out with Utube viscometer of British Standard specification pattern, rigidly supported by clamp and holder especially designed for it, so as to minimize vibrations, disturbances and tilt from vertical. The temperature of the thermostatic bath was read by ordinary mercury thermometer graduated to 0.1° C., while the values of Δ T were determined with a calibrated differential Beckmann thermometer.

The correction for the kinetic energy loss, and the change in the position of equilibrium level of the liquid has been previously discussed by Qurashi.7 The equilibrium levels of liquid were measured with a cathetometer giving an estimate to the third place of mm. With certain precautions, the thermostatic bath recently designed by Townson and Mercer with thermistor bridge control gives a temperature control to $+0.002^{\circ}$ C. or better. Five to eight readings of flow time were taken at each temperature, and were measured to ± 0.004 second or better by using a calibrated stop-watch, started and stopped by electrical impulses, thus giving an estimate to the 3rd place of decimal in seconds. All these factors together ensure a reproducibility of one part in 50,000 or more in flow time, which varied from 200 seconds to 1800 seconds depending upon the liquid and viscometer used.

The aqueous ethyl alcohol solutions were prepared by adding calculated quantity of absolute alcohol (special for spectroscopy, BDH) to thricedistilled water in a stoppered flask and shaking thoroughly. The percentage of alcohol was redetermined at the begining and at the end of experiment by (1) viscosity determination at two suitable temperatures viz. 25°C. and 30°C., and (2) density measurements.

Measurements with 11% Aqueous Ethyl Alcohol

The first set of measurements was carried out to

reinvestigate the large jumps noted at 41°C. for 11% aqueous ethyl alcohol by Ahsanullah, Ali and Qurashi.4 Readings were taken in the range of 38° to 43° C., at the interval of 0.4° to 0.5°C. with viscometer No. 'O' (constant 0.000,736), giving flow times of 800 seconds, so that an ordinary stopwatch could be used. Fig. 1(b) is the plot of values of (E/R)/1000 versus temperature, where the hollow circles are the means for rising and falling sequences of experiment No. 1, and solid circles are the same for experiment No.2. The jump in E/R is seen to extend from 40.6° to 41.2°C. i.e. over 0.6° C. (The (E/R) ÷ 1000 values are higher by 0.05 units than the previously reported ones). Comparison with the reproduction of the graph for 20.2% alcohol in water (Fig. 1(a)) carried out in the range of 32°C. to 41°C. shows that in each case, the apparent extent of the jump is only just a little greater than the measuring interval, thus suggesting that the apparent width is entirely due to the thermal interval used.

To examine this further, the two sharp steps previously observed in 11% alcohol solution at 14°C. and 41°C. were re-measured with a thermal interval of (i) 0.5°C. to 1.0°C. and (ii) 0.2°C. A fresh solution of 10.8% aqueous ethyl alcohl was prepared, and since viscometer No. 'O' was replaced by No. 1, the stop-watch, started and stopped by electrical impulses, was used, giving an estimate to the third place of the decimal in seconds. Tables I(a) and I(b) give the temperatures, Beckmann readings, and times of flow, together with values of (E/R)/1000; the standard deviation as estimated for each group of measurements is of the order of ± 0.004 . The top of Fig. 2 is a plot of (E/R)/1000values in the range of 12° to 16°C, using the same vertical scale for E/R as before, but a temperature scale ten times of that in the previously reported work. The solid circles indicate the mean of heating and cooling sequences of the 1st set of experiments with $\Delta T = 0.5^{\circ}$ C. to 1.0°C., the inclined crosses are the points for the heating sequence of the second set (Table 1(b)) using the thermal interval of 0.2°C. to 0.3°C., the vertical crosses being for the cooling sequence readings for the same interval, staggered in such a manner as to fall in between the previous points. The jump is seen to occur at 14.04°C. ± 0.08 °C. i.e. it falls within 0.16°C., an interval which is a little smaller than the actual thermal interval used in the experiment.

With the same solution, the measurements were extended to the region of 39° C. to 42.5° C., to reexamine the second jump at 41° C. The bottom of Fig. 2 is a plot of these E/R values versus temperature, the solid circles being for the measurements taken at 0.5°C., and the crosses for the points taken at the interval of 0.2 to 0.3°C. Table 1(c) gives the values of (E/R)/1000 together with mean temperature, Beckmann reading and time of flow for various temperatures in this range. The jump occurs at 41.3°C.±0.11°C. Here the maximum spread in temperature is 0.22°C., which compares with 0.16°C. found for the jump at 14°C., giving a mean figure of 0.19°±0.03°C. for the width of these jumps. This is almost exactly equal to the smallest measuring interval of 0.2°C. used.

It may be concluded that by reducing the thermal interval, the observed jumps become more and more sharp, and their widths remain within the limits of the measuring interval used.

Experiments with Water

At this stage, it was considered worthwhile tore-examine some of the typical steps observed in water by Qurashi and Ahsanullah,² for example the prominent jump occurring at 21.5°C. which is also traceable in the standard data of ICT. Thrice-distilled water was used, and its purity was confirmed by its conductivity and pH values at the begining and at the end of the experiment. Table 2(a) gives the data, and Fig. 3 (top) is a plot of (E/R)/1000 versus temperature (using the enlarged scale) for the experiment performed in the range of 19°C. to 23°C., where a large jump is known to occur. As in the case of 11% aqueous alcohol, the solid circles indicate the measurements taken at the interval of 0.5°C., and the crosses are for the interval of 0.2°C. to

Fig. 2.—(Top) Plot of (E/R)/1000 versus temperature for for 10.8 % aqueous alcohol in the range of 12° to 16°C.; solid circles show new measurements taken at 0.5° to 1.0°C. The vertical crosses are the data obtained with $\Delta T = 0.2^{\circ}$ C. in falling temperature and inclined cross the same in rising temperature sequence. The jump occurs at 14.04±0.08°C. (Bottom) Similar plot in the range of 39° to 42.5°C., with the same measuring intervals; the jump occurs at 41.30±0.11°

Table 1 (a).—Beckmann Readings, Flow Times and Calculated Values of $(E/R)/1000 = -T^2(\Delta \ln \nu/\Delta T)/1000$ for Dilute 10.8% Aqueous Ethyl Alcohol, in the Range of 12° to 16°C. with $\Delta T = 0.5^{\circ}$ C. to 1.0°C.

		Heating sequ	ience					•				
Tem-	Beckmann	Time of flow	Mean		(E/R)/1000	Tempe-	Backmann	Time of flow	Mean	(E/R)/1000	Moon
°C.	readings	(secs.) corrected for level	tempera- ture °C.	Uncor- rected	Corrected for Beckmann	°C.	readings	(secs.) corrected for level	tempera- ture ^o C.	Uncor- rected	Corrected for Beckmann	(E/R)1/000
												K
12.00	1.651 ± 0.000	541.033 ± 0.003	10 50	2 000	2 000 1 0 004	12.00	2.671 ± 0.001	540.636 ± 0.004	12 50	2 001	2 001 1 0 001	2 001 1 0 001
13.00	2.666 ± 0.000	521.864+0.006	12.50	2.900	2.900±0.004	13.00	2.682 ± 0.001	521.569±0.005	12.50	2.901	2.901 ± 0.004	2.901±0.001
14 00	2	E03 E96 L 0 00E	13.50	2.913	2.898 ± 0.004	14 00	2 697 1 0 000	503 310 1 0 003	13.50	2.912	2.898 ± 0.004	2.898 ± 0.000
14.00	3,070±0.001 8	505.580±0.005	14.50	2.710	2.713 ± 0.004	14.00	0.000	505.519±0.005	14.50	2.710	2.714 ± 0.004	2.714 ± 0.001
15.00	4.669 ± 0.001	487.386 ± 0.005	15 25	2 601	2 707 1 0 004	15.00	4.668±0.000	487.399±0.006	15 25	2 700	2 715 1 0 004	2 711 1 0 004
15.70	5.377 ± 0.000	476.357±0.004	15.55	2.091	2.707±0.004	15.70	5.388 ± 0.000	476.149±0.003	15.55	2.700	2.715±0.004	2.711 ± 0.004
13 00	0 2 645⊥0 001	522 320-10 007				13 00	0 2 644⊥0 00	522 460-007				
10.00	5 -	522.520±0.007	14.00	2.822	2.815 ± 0.002	15.00	0	522.400±0.007	14.15	2.701	2.699 ± 0.002	:
15.00	2.645 ± 0.001	487.681 ± 0.006				15.30	4.976 ± 0.001	484.060 ± 0.005				X
14.10	3.771 ± 0.000	501.603 ± 0.005					č					
15.70	o 5.365⊥0.001	476 204+0 006	14.90	2.707	2.711 ± 0.002							
	0	110.201_0.000					123 154				2.708 ± 0.002	2.709 ± 0.002
15.00	3.542 ± 0.001	486.734±0.005	15 25	2 738	2.711 ± 6.002	15.00	3.543 ± 0.000	486.695 ± 0.005	15 25	2 735	2.712 ± 0.002	2.714 ± 0.001
15.50	4.052 ± 0.001	478.645 ± 0.004	10.20	2.700		15.50	4.053 ± 0.001	478.615 ± 0.006	10.10			2
16.00	o 4.510+0.000	471.513 ± 0.005	15.75	2.732	2.716 ± 0.002	16.00	4.510 ± 0.000	471.489 ± 0.004	15.75	2.736	2.706 ± 0.002	2.712 ± 0.006
	5		16.25	2.736	2.714 ± 0.002				16.25	2.727		
16.50	5.009±0.001 o	463.896±0.005				16.50	5.009±0.001	463.897±0.005				

		Heating seq	uence					Cooling sequence			
Tem-	Beackmann	Time of flow	Mean	(E/R	.)/1000	Tem-	Beckmann	Time of flow	Mean	(E/R)/1000	
°C.	readings	for level	ture°C.	Uncorrecte	d Corrected	°C.	readings	for level	°C.	Uncorrected	Corrected
				Sec.							
13.00	2.673 ± 0.000	521.342±0.004	13, 15	2,918	2.903 ± 0.004	13.00	2.693 ± 0.001	520.969±0.005	13.14	2,935	2.910 ± 0.004
13.30	2.962 ± 0.000	515.996 ± 0.005	13.45	2 955	2 907 + 0 004	13.25	2.927 ± 0.001	516.613 ± 0.003	13 35	2.970	2.905 ± 0.004
13.60	3.266 ± 0.001	510.375 ± 0.003	13,75	2.954	2.901 ± 0.004	13.45	3.129±0.000	512.851±0.004	13.55	2.964	2.905 ± 0.004
13.90	3.537 ± 0.000	505.421 ± 0.004	14.00	2.057	2.890±0.004	13.65	3.527 ± 0.000	509.209±0.004	13.75	2.994	2.903 ± 0.004
14.10	3.748 ± 0.001	501.603 ± 0.005	14.00	2.907	2.099±0.004	13.85	3.516±0.001	505.728 ± 0.004	13.75	2,901	2.925 ± 0.004
14.10	3.779 ± 0.000	501.401 ± 0.006	14.05	2 700	2 711 1 0 004	14.10	3.783 ± 0.001	501.008 ± 0.003	13,97	2.075	2.095±0.004
14.40	4.069 ± 0.001	496.643±0.005	14.25	2.700	2.711 ± 0.004	14.10	3.774 ± 0.000	501.344±0.005	14.20	2 719	2 709 1 0 005
14.70	4.364 ± 0.001	491.947±0.004	14.55	2.670	2.707±0.004	14.30	3.994±0.001	499.714±0.004	14.20	2.718	2.709±0.005
15.00	4.634±0.000	487.687±0.003	14.85	2.072	2.712±0.004	14.55	4.251 ± 0.000	493.545±0.003	14.42	2.709	2.710±0.005
15.29	4.954 ± 0.000	482.703±0.003	15.14	2.008	2.702±0.004	14.80	4.475±0.000	490.002±0.003	14.67	2.664	2.714±0.005
15.62	o 4.277±0.001 o	477.733±0.004	15.45	2.669	2.702 ± 0.004	15.10	4.800±0.001 o	484.902±0.004	14.97	2.672	2.708±0.005
			Tempera	ature°C.	12.5	17.5	22.5	27.5 32.5		37.5	
			$T^2\beta \div 1$	000	0.016	0.022	0.027	0.032 0.037	7	0.039	

TABLE 1(b).—BECKMANN READINGS, FLOW TIMES AND CALCULATED VALUES OF $(E/R)/1000 = -T^2(\Delta \ln \nu/\Delta T)/1000$ IN THE RANGE OF 13° TO 16°C. WITH $\Delta T = 0.2^{\circ}$ to 0.3° C.

		Heating sequer	nce					Cooling sequen	ce		
	Decel	·	Mean	E /	R - 1000			T:	Mean	E/R ÷ 1000	
perature °C.	readings	rected for level	perature °C.	Un- corrected	Corrected	perature	readings	rected for level	tem- perature	Un- corrected	Corrected
39.50	0.740 ± 0.001	240.341 ± 0.004	20 /5	0.055		40.80	2.039 ± 0.000	233.127 ± 0.004			
39.80	0 1 013±0 000	238 833+0 004	39.65	2,255	2.261 ± 0.004	41 10	0 2 332⊥0 001	231 627 - 0 005	40.95	2.256	2.256 ± 0.004
57.00	0	200.000 10.001	39.90	2.245	2.245 ± 0.004	41.10	0	201.027 10.000	41.22	2.304	2.266 ± 0.004
40.00	1.213 ± 0.000	237.741 ± 0.004	10 15	2 216	2 2/0 . 0 001	41.35	2.585 ± 0.000	230.266 ± 0.003	11 10	0.044	0.000 + 0.004
10 30	0 1 518 L 0 001	236 088 1 0 005	40.15	2.246	2.260 ± 0.004	41 60	2 823 1 0 001	229 173 1 0 004	41.48	2.066	2.030 ± 0.004
40.50	0.001	250.000±0.005	40.40	2.230	2,261+0.004	41.00	2.825±0.001 0	229.175±0.004	41.72	2,083	2.044 + 0.004
40.50	1.737 ± 0.000	234.918 ± 0.004				41.85	3.090 ± 0.000	227.891 ± 0.003			-
10.90	0 001	222 269 1 0 002	40.65	2,232	2.256 ± 0.004	10.25	0	225 228 1 0 004			
40.80	2.029 ± 0.001	233.308 ± 0.003				42.33	3.397 ± 0.000	225.338 ± 0.004	42.45	2.099	2.063 ± 0.005
41.85	3.099 ± 0.000	227.722 ± 0.004				42.55	3.825 ± 0.000	224.258 ± 0.005	12110		T
10 10	0	226 522 10 001	41.98	2.110	2.063 ± 0.005		0				
42.10	3.346 ± 0.000	226.529 ± 0.004	12 22	2 080	2 052 1 0 005						
42.35	3.598 ± 0.001	225.336 ± 0.004	74.24	2.000	2.032 ± 0.003						

TABLE	I (C)	.—Beckmann F	READINGS,	FLOW	Times	(SECS.)	AND	CALCULATED	VALUES OF	(E/R)	1000=	$- T^2(\Delta \ln v)$	ΔT)/1000
		for Dilute	10.8% A	QUEOUS	ETHYL	ALCOH	OL, IN	N THE RANGE	ог 39°С. то	42°C.	WITH Δ	T = 0.2 °C.	то 0.3°С.

Fig. 3.—Some new measurements of E/R for water using the measuring intervals 0.2°C. to 0.3°C. and 0.5°C. At the top is the portion in the range of 19° to 23°C., in which the jump is found to occur at 21.09 ± 0.06 °C.

At the bottom is a similar plot for range of 35° to 43°C., the jumps occurring at 35.7° \pm 0.06, 38.0 \pm 0.15°C. and 41.45 \pm 0.04°C.

	Hea	ting sequence				Cooling sequence							
	Deal	Time of flow	Mean	E/1	R ÷ 100	Town	Deeleneer	Time of flow	Mean	E/F	₹÷1000		
ture °C.	readings	(secs.) corrected for level	erature °C	Uncor- rected	Corrected	ture °C.	readings	(secs.) corrected for level	rature °C.	Uncor- rected	Corrected		
19.00	0.702±0.000 o	1399.96 ± 0.01	19.10	2.101	2.088 ± 0.004	20.20	1.926 ± 0.000	1360.01 ± 0.02	20.30	2.127	2.112 ± 0.004		
19.20	0.900 ± 0.000	1393.16 ± 0.00	19.30	2,100	2.100 ± 0.004	20.40	2.131 ± 0.000	1353.15 ± 0.01	20.52	2,090	2.097 ± 0.003		
19.40	1.104 ± 0.001	1386.20 ± 0.01	19.50	2.096	2.097 ± 0.004	20.65	2.376 ± 0.000	1345.18 ± 0.00	20.77	2,124	2.099 ± 0.003		
19.60	1.313 ± 0.000	1379.16 ± 0.00	19 70	2.089	$2,105\pm0,004$	20.90	2.631 ± 0.001	1334.79 ± 0.01					
19.80	1.519 ± 0.001	1372.48 ± 0.01	19.95	2.072	2.105 ± 0.004	20.94	2.641 ± 0.000	1335.50 ± 0.02	21.04	2,126	2.098 ± 0.005		
20.10	1.815 ± 0.000	1362.73 ± 0.00	17.75	2.072	2.105_0.001	21.13	2.874 ± 0.001	1327.88 ± 0.01	21.01	1 998	1.949 ± 0.005		
20.10	1.823 ± 0.000	1362.38 ± 0.00	20, 20	2 096	2 096 1 0 004	21.40	3.128 ± 0.001	1320.19 ± 0.01	21.20	2 021	1.957 ± 0.005		
20.30	2.021 ± 0.001	$1355.86 {\pm} 0.01$	20.20	2.000	2.000 ± 0.004	21.60	3.339 ± 0.000	1313.75 ± 0.00	21.50	2.021	1.957 ± 0.005		
20.55	2.285 ± 0.000	1347.16 ± 0.00	20.42	2.102	2.100 ± 0.004	21.80	4.526 ± 0.000	1308.02 ± 0.01	21.70	2,020	1.999±0.009		
20, 80	0 = 21 + 0 000	1220 00 1 0 01	20.65	2.132	2.100 ± 0.004	21.65	3.385 ± 0.001	1307.29 ± 0.01	01 77	2 004	1 054 0 003		
20.80	2.551±0.000	1339.00 ± 0.01				21,90	3.658 ± 0.000	1299.11 ± 0.01	21.77	2.004	1.954 ± 0.003		
20.80	2.525±0.000	1337.87 ± 0.00	20.90	2.085	2.107 ± 0.004	22.12	3.867 ± 0.000	1292.89 ± 0.01	22.01	1.996	1.957 ± 0.003		
21.00	2.731 ± 0.001 8	1331.23 ± 0.01	21.14	2.032	2.005 ± 0.004	22.35	$3 \\ 4.063 \pm 0.000$	1287.19 ± 0.00	22,22	1.970	1.960 ± 0.003		
21.25	2.981 ± 0.000 8	1323.45 ± 0.01	21.37	1.998	$1.958 {\pm} 0.004$	22.70	。 4.436 <u>+</u> 0.001	1276.63 ± 0.00	22.52	1.928	1.950 ± 0.003		
21.50	3.228 ± 0.000	1316.11 ± 0.00				23.00	$5 \\ 4.730 \pm 0.000$	1268.41 ± 0.00	22.85	1.925	1.958 ± 0.003		
21.55	53.286 ± 0.000	0 1311.18 \pm 0.00					5						
21.80	o 3.533±0.00	1 1303.57 \pm 0.02	21.67	2.048	1.957 ± 0.005								
22.00	3.740 ± 0.000	1297.26 ± 0.01	21.90	2.041	1.954 <u>+</u> 0.005								

TABLE 2 (a).—Beckmann Readings, Times of Flow, Mean Temperature °C. and Calculated Values of
(E/R)/1000 for Redistilled Water in the Range of 19° to 23° C., with $\Delta T = 0.2^{\circ}$ to 0.3°C.

		Heating seq	uence			Cooling sequence						
Tampana	Paglemann	Time of flow	Mean	E/]	R÷1000	Tomp	Beckmann	Time of flow	Mean	E/.	R ÷ 1000	
ture °C.	readings	for level	erature °C.	(Uncor- rected	Corrected	erature °C.	readings	for level	erature °C	Uncor- rected	Corrected	r
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	M1.
35.00	2.484 ± 0.001 o 2.985 ± 0.000	984.46 ± 0.02 974.46 ± 0.01	35.25	1.937	1.921±0.004			A Constants				M. Que
36.00	o 3.890±0.000	964.91±0.01	35.75	1.910	1.878±0.004							ASHI
36.20	4.087±0.000 ₀	961.10±0.00	56.10	1.931	1.880 ± 0.004							AND
36.00 -	-0.051±0.000 o	961.85±0.01	36,25	1.892	1.880±0.004	35,20	2.694±0.000	980.26±0.00				LAY
36.50	0.449 ± 0.001 5 0.945 ± 0.008	952.56 ± 0.02 943.40 ± 0.00	36.75	1.886	1.873±0.004		0		35.50	1.925	1.930 <u>+</u> 0.004	TAT GP
37,50	$6 \\ 1.436 \pm 0.000 \\ 7$	9 3 4.46±0.01	37.25 37.75	1.870 1.871	1.875 ± 0.004 1.860 + 0.004	35.80 37.10	3.276 ± 0.000 o 1.054 ± 0.001	968.80 ± 0.01 947.25 ± 0.01				K
38.00 38.50	1.949 ± 0.000 0 1.538 \pm 0.001	925.24 \pm 0.01	38.25	1.848	1.845 ± 0.004	37.45	1.408 ± 0.000	940.78 \pm 0.00	37.27	1.887	1.870 ± 0.005 1.875 ± 0.005	KESH
39.00	2.029 ± 0.000	908.12 ± 0.01	38.75	1.852	1.836 ± 0.004	37.85	1.800 ± 0.001 0 2 203+0 000	936.54 ± 0.01	38.05	1.850	1.844 ± 0.005	
39.50	2.517 ± 0.000	899.76 ± 0.01	39.23 39.75	1.851	1.833 ± 0.004 1.844 ± 0.004	38,25	2.203 ± 0.000 5 2.212 ± 0.000	920.34 ± 0.00 924.16 ± 0.00	20 15	1.026	1 040 1 0 004	
40.00 40.50	2.995 ± 0.001 o 3.515 ± 0.000	891.66 ± 0.02 883.06 ± 0.01	40.25	1.829	1.836 ± 0.004	38.70	2.654 ± 0.001	916.47±0.01	38.47	1.836	1.840±0.004	
41.00	4.019 ± 0.001	874.89 ± 0.02	40.75	1.817 1.802	1.825 ± 0.004 1.815 ± 0.004	38.70 39.15	2.644 ± 0.000 5 3.074 ± 0.001	916.57 ± 0.01 909.10 ± 0.01	38.92	1.840	1.834 <u>+</u> 0.004	
41.50	4.523 ± 0.000	866.89±0.01	11,200	1.002	1.010 10.001		T. T					

TABLE 2 (b)BECKMANN READINGS	, TIMESOF FLOW, TEMPERAT	TURE °C. AND CALCULATED	VALUES OF (E/R)	$/1000 = -T^2 (\Delta \ln v \Delta T)$
1000 FOR PURE REDIS	STILLED WATER FROM 35° TO	0.43° C., using $\Delta T = 0.5^{\circ}$	TO 0.3°C., USING	VISCOMETER No. ".

(Continued on next page)

Table 2 (b).—Continued:—

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
41.00	0.196±0.001	875.19±0.01									
41 50	0 673+0 000	867 53-0 02	41.25	1.821	1.821 ± 0.005						
11.00	5	007.0010.02	41.75	1.759	1.759 ± 0.005						
42.00	1.177 ± 0.000	859.81 ± 0.01	42.25	1 757	1.760 ± 0.005		0		39 37	1 857	1 842-0 004
42.50	1.672 ± 0.002	852.33 ± 0.03	12.20	1.757	1.700_0.005	39.60	3.525 ± 0.000	901.34±0.00	57.57	1.057	1.042_0.004
43.00	$\frac{5}{2.174 \pm 0.000}$	844.84 ± 0.01	42.75	1.755	1.764 ± 0.005	40 10	o 4 000⊥0 001	893 18-0 02	39.80	1.865	1.832 ± 0.004
14.00	5					40.10	0	000.10_0.02	40.25	1.814	1.827 ± 0.004
41.00	0.174 ± 0.000	875.33 ± 0.01	41,15	1.833	1.818 ± 0.003	40.40	4.293 ± 0.000	888.36 ± 0.02	40 65	1 792	1.820 ± 0.004
41.30	0.466 ± 0.001	870.59 ± 0.01		1.000		40.90	4.802 ± 0.001	880.19±0.02	10.00	1.772	1.020_0.001
41.60	50.766 ± 0.000	865.74+0.01	41.45	1.843	1.820 ± 0.003	41.30	5,203+0,000	873.77 ± 0.01	41.10	1.813	1.822 ± 0.004
41 00	5 000	2(1 01 + 0 02	41.71	1.761	1.761 ± 0.003		0				
41.90	1.062±0.000 o	861.21±0.02	42.05	1.749	1.760 ± 0.003	41.10	0.280 ± 0.001	873.83 ± 0.02	41.30	1.836	1.818 ± 0.004
42.20	1.371 ± 0.000	856.52 ± 0.01	12.25	1 741	1 7(1 + 0, 002	41.50	0.671 ± 0.000	867.51 ± 0.01	11 10	1 020	1 000 + 0 001
42.50	1.656 ± 0.000	852.26 ± 0.01	42.35	1.741	1.761 ± 0.003	41.30	0.450+0.001	870.79+0.00	41.40	1.839	1.820 ± 0.004
42 80	5	847 49 1 0 02	42.65	1.741	1.758 ± 0.003	41 70	0	964 5410 01	41.50	1.770	1.758 ± 0.004
42.00	0	047.47±0.02	42.95	1.768	1.763 ± 0.003	41.70	0.834 ± 0.000	804.34 ± 0.01	41.95	1.749	1.760 ± 0.004
43.10	2.275 ± 0.001	843.05 ± 0.01				42.20	1.364 ± 0.000	856.79 ± 0.00			
42.00	1.171 ± 0.001	859.90 ± 0.02					3				
43.00	2,172+0,000	844 84+0 01	42.50	1.756	1.763 ± 0.005						
10.00	5	011.01 ± 0.01									

		Heating sequ	uence					Cooling sequence			
Touton	Backmann	Time of flow	Mean	E/1	R÷1000	Tomp	Reckmann	Time of flow	Mean	E/:	R÷1000
ture °C.	readings	for level	erature °C.	(Uncor- rected	Corrected	erature °C.	readings	for level	erature °C	Uncor- rected	Corrected
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
35.00	2.484 ± 0.001	984.46+0.02									
35 50	0 2 985⊥0 000	974 46-0 01	35.25	1.937	1.921 ± 0.004						
35.50	0 0	974.40±0.01	35.75	1.910	1.878 ± 0.004						
36.00	3.890±0.000 ⊙	964.91 ± 0.01	56.10	1.931	1.880 ± 0.004						
36.20	4.087±0.000 o	961.10 ± 0.00									
36.00 -	0.051 ± 0.000	961.85 ± 0.01									
36 50	0 449 1 0 001	052 56 1 0 02	36.25	1.892	1.880 ± 0.004	35.20	2.694 ± 0.000	980.26 ± 0.00			
50.50	5 5	952.50±0.02	36.75	1.886	1.873 ± 0.004		U U				
37.00	0.945 ± 0.008	943.40±0.00	37.25	1.870	1.875 ± 0.004	35.80	3.276+0.000	968.80+0.01	35.50	1.925	$1.930 \pm 0.$
37.50	1.436 ± 0.000	934.46 ± 0.01	37 75	1 971	1 860 1 0 004	37 10	0 1 054-L0 001	947 25 1 0 01			
38.00	1.949 ± 0.000	925.24 ± 0.01	57.75	1.0/1	1.800±0.004	57.10	1.054±0.001 2	947.25±0.01	37.27	1.887	$1.870 \pm 0.$
38.50	o 1.538+0.001	916.65+0.01	38.25	1.848	1.845 ± 0.004	37.45	1.408 ± 0.000	940.78 ± 0.00	37.65	1.865	$1.875 \pm 0.$
39.00	2 029 1 0 000	908 12 10 01	38.75	1.852	1.836 ± 0.004	37.85	1.800 ± 0.001	936.54 ± 0.01	38 05	1 850	1 844 - 0
57.00	5 5	908.12±0.01	39.25	1.851	1.835 ± 0.004	38.25	2.203 ± 0.000	926.54 ± 0.00	58.05	1.850	1.044±0.
39.50	2.517±0.000 o	899.76 ± 0.01	39.75	1.852	1.844 ± 0.004	38.25	$5_{2.212\pm0.000}$	924.16 ± 0.00			
40.00	2.995 ± 0.001	891.66 ± 0.02	40 25	1 829	1.836 ± 0.004	38.70	0 2.654+0.001	916 47+0 01	38.47	1.836	$1.840 \pm 0.$
40.50	3.515 ± 0.000	883.06±0.01	10.75	1.047	1.005 1.0.004	20.70	5	016 57 10 01			
41.00	$5_{4.019\pm0.001}$	874.89±0.02	40.75	1.817	1.825 ± 0.004	38.70	2.644±0.000 5	916.57±0.01	38.92	1.840	1.834±0.
41 50	5 4 523±0 000	866 89 + 0.01	41.25	1.802	1.815 ± 0.004	39.15	3.074 ± 0.001	909.10 ± 0.01			

TABLE 2 (b).—BECKMANN READINGS, TIMES OF FLOW, TEMPERATURE °C. AND CALCULATED VALUES OF $(E/R)/1000 = -T^2 (\Delta \ln \sqrt{\Delta T})$ 1000 for Pure Redistilled Water from 35° to 43° C., using $\Delta T=0.5^\circ$ to 0.3°C., using Viscometer No. "6"

(Continued on next page)

So that, if the half-width of the jump is taken to be 7. M.M. Qurashi, Pakistan J. Sci. Ind. Res., 116 (1958).

, г