TEMPERATURE DEPENDENGE OF THE INTERMOLEGULAR AGTIVATION ENERGY FOR FLOW IN LIQUIDS AND SOLUTIONS

Part III.-Periodicity of Activation Energy in Pure Benzene

A. K. M. Ahsanullah, S. Rahmat Ali and Mazhar M. Qurashi
Physics Division, Central Laboratories, Pakistan Council of Scientific and Industrial Research, Karachi

(Received April 17, 1963)
As a sequel to the series of investigations leading to the discovery of jumps in the activation energy E_{η} for viscous flow of several hydroxylic liquids, it was considered worthwhile to undertake similar measurements on a few typical nonhydroxylic liquids. Some results for benzene are reported here, and a satisfactory degree of reproducibility has been obtained in working with two samples of pure benzene using a measuring interval $\Delta \mathrm{T}=1^{\circ} \mathrm{C}$.

Evidence of a nearly cyclic variation with an approximate period of $5^{\circ} \mathrm{C}$. has been obtained in the range of 26° to $46^{\circ} \mathrm{C}$., the peak-to-peak amplitude of $\left(\mathrm{E} r_{i} / \mathrm{R}\right) / 1000$ being 0.1 , corresponding to changes in $\mathrm{E} \eta$ of about 200 cal.mole.

I. Introduction

In previous communications on this subject, it has been shown that, with the use of a sufficiently small thermal interval of $I^{\circ}-2^{\circ} \mathrm{C}$., the activation energy measurements for several hydroxylic liquids ${ }^{1}, 2$ and aqueous alcohol ${ }^{3}$ solutions show sharp, regularly-recurring jumps in activation energy, En. In an effort to throw further light on those phenomena, it was considered desirable to investigate the flow activation energy for some nonhydroxylic liquids such as the paraffin oils, benzene, etc. The present communication gives the results of some experiments carried out on benzene, which was previously found to exhibit an anomalous temperature variation 4 of the activation energy of mixing $\Delta \mathrm{G}_{\mathrm{m}}$ in solutions of heptane.

The measuring technique is the same as used in the previously reported experiments on flow activation energy of ethylene glycol, ${ }^{2}$ where temperature control to $0.002^{\circ} \mathrm{C}$. was maintained and the viscometer system was protected by drying tubes on either side. Three to five readings of flow-time were taken at each temperature, and the temperature intervals were measured on a fifth-degree thermometer in the preliminary experiment, and on a calibrated Beckmann differential thermometer in the later experiments. Values of E / R were calculated from the usual equation,

$$
\begin{array}{r}
\mathrm{E} \eta / \mathrm{R}=\Delta \ln n / \Delta(\mathrm{I} / \mathrm{T})=-\mathrm{T}^{2} \Delta \ln n / \Delta \mathrm{T} \\
=-\mathrm{T}^{2} \Delta \ln \nu / \Delta \mathrm{T}-\mathrm{T}^{2} \beta
\end{array}
$$

2. Preliminary Experiment

This experiment was of an exploratory character and therefore the measurements were taken from $30^{\circ} \mathrm{C}$. to $50^{\circ} \mathrm{C}$. at intervals of $2^{\circ} \mathrm{C}$. The actual flow-times at the various temperatures are shown in Table 1, together with their standard deviations
and the calculated values of E / R for the heating and cooling sequence. The overall means are given in the last column and these are seen to have an r.m.s. error of about 0.015 , i.e. a little over 1%, which is quite satisfactory.

A plot of these results is shown in the lowest graph (triangles) of Fig. I marked Expt. I, and one can readily observe the two maxima at $33^{\circ} \mathrm{C}$. and $45^{\circ} \mathrm{C}$., the maximum-to-minimum variation being about o.r unit, i.e. seven times the r.m.s. error. A third max is also noticeable near $38^{\circ} \mathrm{C}$.

3. Experiments Using the Beckmann Thermometer

The second set of experiments was carried out at every degree centigrade using a Beckmann thermometer, and the calculations of E / R were made with a one-degree C. interval so as to obtain higher resolution. The results obtained are given in Table 2, where the last column gives the standard deviations as estimated (for groups of five temperatures) from the differences between the results for the heating and cooling sequences. A plot of this data labelled Expt. II is shown in the lower half of Fig. I as solid circles. The best curve drawn through these brings out quite clearly the three maxima observed in the preliminary experiment, as well as a series of others at intervals of about $4{ }^{\circ} \mathrm{C}$.

In an effort to obtain still more information about the character of these more or less cyclic variations in the activation energy, a third experiment was carried out, but the temperatures were selected in such a way that the plotted points would fall midway between the solid circles of Expt. II. The actual flow-times and Beckmann readings taken at various temperatures are recorded in Table 3, the other columns of which give the corresponding values of E / R calculated for

Table i.-Temperature, Time of Flow and Calculated Values of $E^{\prime} / \mathrm{R} \div 1000=-\mathrm{T}^{2}(\Delta \ln v / \Delta \mathrm{T}) / \mathrm{rooo}$ for Pure Benzene (Analar Grade) Using $\Delta \mathrm{T}=2^{\circ} \mathrm{C}$.

Heating sequence				Cooling squence				Overall$\text { mean } \mathrm{E} / \mathrm{R} \div$$1000$
Temp. (${ }^{\circ} \mathrm{C}$.)	Time of flow (sec.) corrected for level	Mean temp. (${ }^{\circ} \mathrm{C}$.)	$E^{\prime} / R \div 1000$	Temp. (${ }^{\circ} \mathrm{C}$.)	Time of flow corrected for level	Mean temp. (${ }^{\circ} \mathrm{C}$.)	$E^{\prime} / \mathrm{R} \div 1000$	
30.73 ± 0.01	$868.40 \div 0.10$			30.73 ± 0.01	868.30 ± 0.08			
$32.00+0.00$	$854.96+0.20$	31.36	1.14			31.36	1.12	1.13 ± 0.01
34.00 ± 0.00	832.51	33.00	1.24	$\begin{aligned} & 32.00 \pm 0.01 \\ & 34.00 \pm 0.00 \end{aligned}$	$\begin{aligned} & 855.00 \pm 0.10 \\ & 832.65 \pm 0.10 \end{aligned}$	33.00	1.24	$1.24 \pm .000$
36.00 ± 0.00	812.53 ± 0.11			36.00 ± 0.00	812.77 ± 0.10	35.00	1.14	$1.145 \pm 0.00_{5}$
36.00 ± 0.00	812.49 ± 0.05			36.00 ± 0.01	812.54 ± 0.08			
$\begin{aligned} & 38.00 \pm 0.00 \\ & 40.00 \pm 0.00 \end{aligned}$	$\begin{aligned} & 793.84 \pm 0.10 \\ & 775.82 \pm 0.12 \end{aligned}$	39.00	1.12	$\begin{aligned} & 38.00 \pm 0.00 \\ & 40.00 \pm 0.00 \end{aligned}$	$\begin{aligned} & 793.89 \pm 0.12 \\ & 775.40 \pm 0.06 \end{aligned}$	$\begin{aligned} & 37.00 \\ & 39.00 \end{aligned}$	$\begin{aligned} & 1.12 \\ & 1.16 \end{aligned}$	$\begin{aligned} & 1.12 \pm 0.00 \\ & 1.14 \pm 0.02 \end{aligned}$
40.00 ± 0.01	774.92 ± 0.08			40.00 ± 0.00	774.94 ± 0.05			
42.00 ± 0.01	758.42 ± 0.05		1.07	42.00 ± 0.00	758.44 ± 0.11			
44.00 ± 0.00	741.79 ± 0.10	$\begin{aligned} & 43.00 \\ & 45.00 \end{aligned}$	1.11	44.00 ± 0.01	741.72 ± 0.10	43.00	1.12	$1.11_{5} \pm 0.00_{5}$
46.00 ± 0.00	725.60 ± 0.10			46.00 ± 0.00	725.10 ± 0.10			$1.13{ }_{5} \pm 0.01{ }_{5}^{5}$
46.00 ± 0.00	725.02 ± 0.10			46.00 ± 0.01				
48.00 ± 0.00	709.18 ± 0.20	47.00 49.00	1.13	48.00 ± 0.00	709.50 ± 0.12	47.00	1.11	1.12 ± 0.01
50.00 ± 0.00	694.69 ± 0.10			50.00 ± 0.01	694.90 ± 0.10	49.00	1.08	$1.075: \pm 0.00_{5}$

TEMPERATURE (${ }^{\circ} \mathrm{C}$)

Fig. 1.-Series of graphs showing the results of repeated experiments on benzene to determine the values of $E / R=-T^{2} \Delta \ln u / \Delta T$ at various temperatures:
(i) Lowest curve (triangles) is a plot of the measurements made at intervals of $2^{\circ} \mathrm{C}$. with a fifth-degree thermometer, showing two clear maxima at $33^{\circ} \mathrm{C}$. and $45^{\circ} \mathrm{C}$
(ii) Second curve (solid circles) marked "Expt. II" gives the results of the next experiment, which was carried out from $8^{\circ} \mathrm{C}$. to $46^{\circ} \mathrm{C}$. with a measuring interval $\Delta \mathrm{T}=1^{\circ} \mathrm{C}$., and using a Beckmann differential thermometer. The peaks at $33^{\circ} \mathrm{C}$. and $45^{\circ} \mathrm{C}$. are again seen, and in addition several more at intervals of 4° to $5^{\circ} \mathrm{C}$.
(iii) Curve marked "Expt. III" (hollow circles) shows a repetition of the previous experiment, but at temperatures displaced by $0.5^{\circ} \mathrm{C}$. There is general agreement with "Expt. II."
(iv) Uppermost curve (solid and hollow circles) is a combined plot of Expt. II and III, and good concordance is obtained down to $16^{\circ} \mathrm{C}$., below which there are a few substantial discrepancies. The mean graph above $16^{\circ} \mathrm{C}$. has nicely regular appearance.

Table 3.-Begkmann Reading, Flow Times and Calqulated Values of E/R for Pure Benzene (Analar Grade), Using $\Delta \mathrm{T}=\mathrm{I}^{\circ} \mathrm{C}$. (Expt. III).

the heating and cooling sequences, together with the overall mean values. The final standard deviations are again estimated on the basis of the differences between the two sets of values.

Table 2.-Calculated Values of $\mathrm{E}^{\prime} / \mathrm{R} \div 1000$ $=-\mathrm{T}^{2}(\Delta \ln v / \Delta \mathrm{T}) /$ rooo for Pure Benzene, $\Delta \mathrm{T}=\mathrm{I}^{\circ} \mathrm{C}$.

Mean temp. $\left({ }^{\circ} \mathrm{C}.\right)$	$\left(E^{\prime} / \mathrm{R}\right) / 1000$			
	Heating sequence	Cooling sequence	Mean	Standard deviation
8.00	1.154	1.234	1.194 ± 0.040	
9.00	1.150	1.216	1.183 ± 0.033	
10.00	1.240	1.199	1.220 ± 0.020	± 0.028
11.00	1.198	1.204	1.201 ± 0.003	
12.00	1.141	1.195	1.163 ± 0.027	
13.00	1.185	1.162	1.174 ± 0.012	
14.00	1.148	1.152	1.150 ± 0.002	
15.00	1.154	1.166	1.160 ± 0.006	± 0.012
16.00	1.180	1.160	1.170 ± 0.010	
17.00	1.148	1.080	1.114 ± 0.034	
18.00	1.184	1.040	1.112 ± 0.072	
19.00	1.164	1.168	1.166 ± 0.002	
20.00	1.066	1.181	1.123 ± 0.058	± 0.040
21.00	1.080	1.134	1.107 ± 0.027	
22.00	1.085	1.113	1.099 ± 0.014	
23.00	1.219	1.076	1.148 ± 0.072	
24.00	1.100	1.081	1.090 ± 0.010	
25.00	1.070	1.078	1.074 ± 0.004	± 0.026
26.00	1.113	1.106	1.109 ± 0.003	
27.00	1.098	1.134	1.116 ± 0.018	
28.00	1.100	1.116	1.108 ± 0.008	
29.00	1.102	1.000	1.051士0.051	
30.00	1.108	0.976	1.042 ± 0.066	± 0.033
31.00	1.109	1.078	1.093 ± 0.015	
32.00	1.096	1.106	1.101 ± 0.005	
33.00	1.080	1.132	1.106 ± 0.026	
34.00	1.023	1.090	1.056 ± 0.034	
35.00	1.010	1.092	1.051 ± 0.041	± 0.030
36.00	1.032	1.049	1.040 ± 0.009	
37.00	1.052	1.096	1.074 ± 0.022	
38.00	1.113	1.096	1.104 ± 0.008	
39.00	1.037	1.089	1.063 ± 0.026	
40.00	1.072	1.108	1.090 ± 0.018	± 0.025
41.00	1.083	1.092	1.087 ± 0.005	
42.00	1.059	0.948	1.004 ± 0.055	
43.00	1.042	0.983	1.013 ± 0.030	
44.00	1.086	1.109	1.098 ± 0.011	± 0.030
45.00	1.092	1.014	1.053 ± 0.039	
		Overall standard deviation $= \pm 0.030$		

These over-all mean values are plotted as hollow circles in the upper half of Fig. i, the graph being labelled Expt. III.

4. Conclusions

The graphs for Expts. II and III show a satisfactory measure of correspondence in the positions of the maxima and minima, and therefore a combined plot is shown in the top-most graph of Fig. I, the data from the two experiments being plotted with solid and hollow circles as before. This combined plot is a considerable improvement on the individual graphs and enables us to draw a nicely undulating regular graph down to a temperature of $16^{\circ} \mathrm{C}$. or so, with the individual points showing an r.m.s. scatter about the graph of only ± 0.022, which compares with the estimated standard deviations ranging from 0.02 to 0.04 in Tables 2 and 3. It follows that the deviation for the mean of pairs of successive points (from Expts. II and III) 0.5° apart is ± 0.016, while the peak-to-peak amplitude of the undulations in this graph lies between 0.06 and 0.10, i.e. four to six times this standard deviation for the means of successive points. Below $16^{\circ} \mathrm{C}$., there are some large discrepancies between the results for Expt. II and Expt. III, which could be due to the presence of traces of water in the benzene, which became slightly milky below $12^{\circ} \mathrm{C}$., corresponding to about 0.03% water content.

Thus we may conclude the existence of a definite, more or less cyclic, variation in activation energy E_{η} for flow of benzene in the range of $16^{\circ} \mathrm{C}$. to $46^{\circ} \mathrm{C}$., the period being nearly $4.0^{\circ} \pm 0.9^{\circ} \mathrm{C}$. and the amplitude about 8% of the mean value. Further experiments are being carried out on heptane, on benzene of various degrees of purity, and on light mineral oils, such as high-speed diesel oil.

References

1. M.M. Qurashi and A. K. M. Ahsanullah, British J. Appl. Phys., 12, 65 (196i).
2. A. K. M. Ahsanullah and M. M. Qurashi, ibid., 13, 334 (1962).
3. A. K. M. Ahsanullah, S. R. Ali and M. M. Qurashi, Pakistan J. Sci. Ind. Research, 5, 133 (1962).
4. M. Tayyab Qureshi and M. M. Qurashi, ibid., 5, 222 (1962).
