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Introduction

In Part I of this paper.! some measurements
were presented on the physical properties of
concrete mixtures composed of cement and rice
husk ash in various proportions, ranging from
5: I upto I :20 by volume. Especially in teresting
was the curve for thermal conductivity against
the composition of the mix, which exhibited
an intermediate minimum followed by a maximum,
as shown in Fig. 2 in Part I of this paper. It is
easily seen that these mixtures essentially form
cellular concretes because the ash is extremely
porous with a cellular structure (Fig. 6(a) below).

In a system of this type, the thermal conduc-
tivity of any particular composition depends on
three distinct factors, namely, (I) the law governing
the thermal conductivity of a simple mixture of
the constituents whithout any changes in volume
or chemical interaction, (2) the change in density
caused by the purely mechanical volume changes
resulting from mixing, setting, etc., and (3) the
formation of new products by chemical interaction
between the constituents of the mix.

The first factor appears to be the dominant
one in the case of concretes of cement and rice husk
ash, the second and third coming next in
importance. Therefore it was thought advisable
first to investigate, both theoretically and experi-
mentally, the thermal conductivities of cellular
concretes, and then to apply these results to
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elucidate the behaviour of the complex cement-
rice-husk-ash system, "which comprises at least
three components, viz., cement, air, and the silica
of the ash. In order to analyse the first factor,
we must find an accurate expression for the thermal
conductivity of intimate mixtures of two substances
of thermal conductivities K, and Kj, mixed in
various proportions Xa and Xb by volume.

I. ExaJDination of Previous ForJDulae

Two formulae for the thermal conductivity
of porous materials are extant in the literature.
The one derived by Russell 2 for rectilinear flow
through a cubic array of cubical pores of con-
ductivity Kg embedded in a solid of conductivity
x, gives

!'S = I _Pl/3+Pl/3jf (r-p2!3)+(Kg/Ks) p2/3 ~
K l J

(ra)
where the porosity P_, (ps - p) / (ps - Pg).

Since Kg/Ks < < J, this makes

K:::: Kg + K, (r _ 1>2/3).

In order to test the applicability of equation r(a),
comparative plots against (r - P2/3) have been
made in Fig. i for the calculated values (curve I)
for cellular concretes and of the standard data
(solid circles) given in the literature.s Kg being
taken as 0.60 X ro-4 cal.cm.r? sec.-l/OC. The
agreement can only be described as poor, especially
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Fig. l.-Colllparativc graphs of the thermal conductivity
(K x 104 cal, CIII.-1 sec.-I'oC.) of cellular concretes against
(1 - p2,J), where P is the porosity. The solid circles arc the experi-
mental points, and the four graphs labelled I to IV arc the values
calculated on the basis of:

I. Russell's formula for the arrangement 'A' in the inset.
II. Maxwell and Raleigh's formula.

HI. Flow along a face-diagonal in Russell's arrangement,
as shown at 'D' ill the inset.

IV. Flow along a body-diagonal in Russell's arrangement.

at high porosity, and cannot be accounted for by
any allowance for the fact that the solid phase
is taken as the concrete of density 1'76, which
has a porosity of about 0.2. The other equation
given in the literature is

K(Ks ={ 1- (I - b Kg(Ks)P }/ { 1+(b - I)P}

(Ib)

with b = 3 Ks((2 K, + Kg), and was originally
derived rigorously by Maxwell+ and later by
Rayleigh5 for the electrical conductivity of a cubic
array of spherical particles in a continuous medium.
The values of K obtained from this second formula
are shown by the broken curve II in Fig. I, and
give an insignificant improvement on Russell's
formula.

The unexpectedly large divergence of the above
theoretical formulae from the experimental
measurements can be traced to the use of a model
with an over-symmetrical arrangement of the
pores, thus providing continuous channels of the

highly conducting solid medium in directions
parallel to the cube edges of the pore lattice as
shown at 'A' in the inset to Fig. I. Moreover, in
this highly symmetrical arrangement, very different
values are obtained for the conductivity when
rectilinear heat flow is considered parallel to the
face diagonal of the pore lattice, as shown at
'B'in the inset to Fig. 1. A calculation for this case
under the assumptions made in Russell's derivation
gives the dotted line curve III, which is in rough
agreement with the experimental data. In a similar
manner, an approximate calculation for flow along
the body diagonal of the lattice gives the lowest
(chain-dotted) curve IV, which again deviates
markedly from the experimental values.

In view of the above results, it was considered
necessary to set up a better model for a homogene-
ous mixture of two substances, such that the
straight continuous channels found in the
arrangement discussed above are done away with.
Starting with simple composite slabs of the two
substances, nearly isotropic blocks can be designed
by progressive three-dimensional stacking of the
slabs, thus providing a close approach to a
homogeneous random mixture of the two
components. The principal thermal conduc-
tivities are calculated for successive stackings,
and a good approach to the ultimate law for a
homogeneous mixture is obtained in, the third
step, thi: law being in excellent agreement with
experimental data.

2. Derivation of the Theoretical Formula
for Conductivity of a Simple Homogeneous

Mixture

Consider first a composite slab made up of
several alternate layers of substance A of thickness
8" and conductivity Ks, and substance B of thick-
ness 8b and conductivity K], (Fig. 2(a)). Such a
slab is not isotropic, and its equivalent conductivity;
Kj , [or heat flowing perpendicular to the layers.
(Fig. 2(a)) is different from the equivalent
conductivity, Kl.l, for heat flowing in the two
other principal directions both parallel to the layers
(Fig. 2(b)). Figure 2(C) shows schematically the
three principal directions for the conductivities,
and this presentation indicates that, if several
slabs of the type shown in Fig. 2 are stacked together
in a three-dimensional array using all the three
orientations at random, then, for heat flowing
along anyone of the principal axes of the array,
there will be twice as many slabs in which heat
flows parallel to the layers as there' are slabs in
which the heat flow is perpendicular to the layers.
I t follows that the resultant conductivity will be a
mean of Kl. and Kn, weighted in the ratio of
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I to 2. KL and KII are readily calculated and
from these values we shall be able to put down the
first approximation to the conductivity of an
isotropic mixture of the two substances.

K.L and KLJ can be calculated by the usual
methods for heat flowing through slabs in series
and in parallel (cf. flow of electric current through
conductors), and the following formulae are
obtained:

I/KL = xa/Ka+Xb/Kb = Xa/Ka+(I - Xa)/Kb (aa)
KIl= Xa Ka+ Xb Kj, =0 XaKa+(I -xa) Kb· (zb)

It is seen that KL is made up of K, and K], in
harmonic proportion, while K1j is made up of
K, and Kj, in arithmetic proportion. These
formulae for KL and KII can be combined into
the general formula,

KL corresponding to e = - I, and KI.I to e= + r .
(The term =i]« on either side of formula (3)
cancels out when e + 0, while for e = 0 this formula
reduces to In K = Xa In K, + xj, In Kb). If now
a mean were to be taken of K.L and Ku with
equal weights, it is easily seen that the resultant
formula * would closely correspond to (3) with

*K.L Kn =Ka Kj, (xa K, +XbKb)/(Xa Kb+ XbKa)

(
Xa Xb)2 ( Xb xaj Xa Xb)

= K, Kb - K, Kb K, Kj,

e = 0 (mean of - I and + I), i.e. to the formula
In K = Xa In K, + Xb In Kj., i.e.

Xa Xb
K =Ka x , (5)
This is the formula for mixing by geometric
pr?portion, and is quite to be expected, because
It IS well known that the geometric mean of two
quantities is also the geometric mean of their
arithmetic and harmonic means.

In our case, however, Fig. 2(C) requires that
we take the weighted mean with weights of I and 2

for K.L (e = - I) and Kn (e = +1), respectively.
We may therefore expect that the resultant
formula will be a special case of (3) with
e = (1/3 )( (- I) + 2/3 X I) = 1/3, i.e.

113 1!3 1/3
Kmix - I = Xa K, - I + Xb Kj, - I,

I /3 --=------'1 ''-3 -----,1 '-3 (6)

Xa Ka+ xj, Kb
X Xa Kb + Xb x,

(
Xa

Ka
Xb)2 J ( (Ka ) Xb

Kb 1 Xa Kb

(Kb)Xa)J( (Kb) xj, (Ka)Xa) I
+ Xb Ka Xa K: +Xb Kb f (4)

and the factor in curly brackets is exactly equal
to I for Xa = 0, t, and I, and is very close to unity
for intermediate values of xs.
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I t is however to be noted that the values of
£ corresponding to the three principal directions
for the individual slabs of Fig. 2 deviate from this
mean figure of 1(3 by +2(3, +2(3 and -4(3,
respectively, giving a standard deviation of 2(3
for the mean. So that, inspite of the plausibility of
e being equal to 1/3 on the basis of the above
argument with a three-dimensional array, it mere-
ly proves that, for an isotropic mixture,

e = 1/3 ± ct, where ct « 2/3.

3. More Rigorous Proof of For-mula

(i) First Approximation

The above limits for E are very wide, and
equationf y) therefore needs to be substantiated
by more rigorous proof. We accordingly consider
the arrangement of Fig. 3, which provides a closer
approximation to an isotropic intimate mixture
of the two substances, A and B. Fig. 3 comprises
two composite slabs of the types shown in Figs. 2(a)
and 2(b) respectively, arranged (at right angles)
one above the other. Taking the y-axis and z-axis
in the plane of the paper (Fig. 3) and the x-axis
perpendicular to this plane, we easily find by a
further application of the formulae 2 that*

Kx = Kjl = xa Ka+ xb Kb,

I
Ky = --(K.L + KU)

2

I ( x, Kb 1
= - ~ K + K + x, K, + xb Kj, ~2 l Xa b xb a J

I/Kz = ~(~ + _1_)
2 Kl. Kl.I

r r Xa xb I I
="2{ Ka + Kb + X-;;-Ka+Xb Kb}

K y and K, are readily shown to be very near to

(8b)

Xa Xb
x, Kb in value. Thus

xa xb
lIKz=-2(xaKb+xbKa+ Ka Kb )

2 Xb Xa Xax, + xj, Kb
Ka Kb

/ Ka
a K~ =(1+8)1 (K:a K"bb), (8d)

where 8 is zero for xa=o,r, and has its maximum
value for Xa=Xb = r/2" when it is. equal to

-_ .. , ----,_., --------------
*It is of course to be understood that these formulae. will

apply strictly only if the temperature across the dividing planes, .
AI BI' A2 B2. etc. in Fig. 3 is perfectly uniform.

Ky

-
~

A4' .~-""""'-TT1-'"T7'"i---i ..• 'SJ

Fig_ 3,-Composite block made up of two slabs of the type shown
in Fig_2 oriented so as to make the block more nearly isotropic.

(8a)

I ~ (-Ka+Kb + 2VKaKb) _ I I~
L 2 2VKaKb x, + Kb J

= ~_(Ka ~ Kb -V KaKb) / (Ka~Kb VKaKb}

which is only o. I3 for Ka/Kb =9. Similarly

( ') Xa Xb
= 1+8 K, Kb, (8e)

(8c) where 8' is zero for Xa = 0,1, and is a maximum
for Xa = Xb = 1(2, this maximum value being
the same as for 8. Thus, the mean of Ky and Kz

Xa Xb
will be equal to (Ka X Kb ) to a very high
degree of accuracy, so that we may conclude
(cf. equation(5)) that the formula for mean
thermal conductivity, Ky,z, in these two principal
directions corresponds to formula (3) with £=0.
Kx, on the other hand, corresponds to s =+1, cf.
equations 8(a) and (3), If we take a ra?-dom
3-dimensional stacking of the blocks of FIg. 3,
the resultant K is again given by the mean of Ky,z
and Kx, weighted in the ratio of 2 to I, and we
can estimate that the value of E in the formula for
the isotropic mixture should be very close to
(2XO+ I X (+1))/3= 1/3. The S.D. of this
mean being now only 1/3 for an individual block,
we have proved that for the three-dimensional
stacking of the blocks, £= 1/3± IX, where IX« 1/3.



(ii) Second Approximation
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The above analysis is an improvement on that
given in section 2, insofar as the composite block
is more nearly isotropic, and therefore the values
of e for the three principal directions vary less
than before. A further improvement is effected
by considering a block of the type shown in the
inset to Fig. 4, which consists of slabs arranged
together in three different orientations so as to
give almost the same thermal conductivity in each
of the three principal directions. It is seen that
in each of these directions, the heat flow is parallel
to the constituent layers in two of the slabs, and
is perpendicular to these layers in the third.
Therefore we have

and
2/3 XaKb+xbKa (gb)

I/Kz= xaK-;;-+XbKb+ 3 KaK~
If we denote the value of K calculated from
equation (7) by Kid ea " then

Kx,y - Kideal
2 KaKb(Xa2+!+ xb2)+2xaXb(Ka2+Kb2)

3(xaKb+xbKa)
_ (xaKa I i3+XbKbI 13) 3

3KaKb+2Xaxb(Ka-Kb)2

3(XaKb+XbKa)
-(xa3Ka+Xb3Kb+3XaXbKaI 13KbI 13

X (XaKaI/3+XbKbI/3))
r K Kb 1=i a _(Xa3Ka+Xb3Kb) ~
lXaKb+xbKa J

r 2 (Ka-Kb)2+XaXb~ H_ - --"--:----''----==c-
l3 XaKb +xbKa

1
-3KaI/3KbI/3(xaK/13+xbKbI/3) l-

I

J
Simple substitution shows that this difference
is zero for Xa = 0 and for Xa = I.
For Xa = Xb =!, it is equal to
r 2KaKb Ka+Kb"1 + 1 r 4 (Ka-Kb)2i ~ - ~
L Kb+Ka 8 J 4 l 3 Ka+Kb

1
- J.KaI/3KbI/3(KaI/3+KbI/3) ~

2 j

=~5 2. (Ka+Kb)-l KaI!3 KbI 13 (KaI!3+Kbl!3) \
412 2 . J

+ r 2KaKb Ka+Kb + _1_ iKa-Kbl2ltKa+Kb 2 3 Ka+Kb J

1 16

.;;"
0.••.
~ 14

~~ U..,
I~

10

8
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Xa •
Fig. 4.-Graph showing the ideal variation of thermal conduc-

tivity for a mixture governed by the KI/3 law proposed in this
paper and the values calculated for the approximately isotropic
block shown in the inset (made up of three slabs of the type sketched
111 Fig. 2). The dotted area indicates that the composite layers making
up the slab are parallel to the plane of the paper.

3 r 1siKa-Ka2/3Kb1/3 + Kb-KaI/3Kb2/3 I-
l J

+ (~_~) (Ka - Kb)2
3 2 Ka+Kb

i- (Ka I /3-KbI/3 )(Ka2/3-Kb2/3)

I (Ka - Kb)2
- 6 Ka+Kb--

= ~(KaI/3-KbI/3)2 r Ka1/3+KbI/3

4 (Ka+Kb)/2 1. 2
Ka+Kb (Ka2/3+ KaI !3KbI 13+Kb2J3)21

X 2 - - 3 f·

5

26

22

18
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From this we find
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r Kx,y-Kideall 3~----- ~,....,-
L Kideal J - 4

Xa=!
X L (KaI./3-K?~~y

3 KaI!3+KbI/3, (loa)
which can be shown to correspond to a value of e
given by the simplified formula,

(e) =r/3+7/8(Ka2/3-Kb2/3)2x,y

/ (Ka2/3 +KaI 13KbI 13+ Kb2/3 )2. ( lob)
The term added to 113 is small, being nearly
0.1 X {(Ka2/3-K b2/3 )/K 2/3}2, =s- for a value of
Ka/Kb as high as 4, the additional term is 0.08,
giving (e)x, y= 1/3+ 0.08. Similarly, the evaluation
of (Kideal- Kz) gives
rKideal-~z 1 ,....,(Ka-Kb)2 _ (!<-aI 13 - KbI 13)2

-<, Kidcal r - 12KaKb 3 KaI 13 +KbI /3
L J

Xa=!
II (KaI/3-KbI/3)2 (KaI/3-KbI/3)2,

- 8' KaI 13KbI 13 X (KaI 13+KbI 13)2 (roC)

which leads to the value of (e)z corresponding to
Ka/Kb=4 as 113-0.14. From these two values of €,

we can deduce that the value for a three-dimen-
sional stack of the nearly isotropic composite blocks
of Fig. 4 will be given by

(KaI /3-KbI /3)2
Ka+Kb

(iii) A Numerical Example

It is however still necessary to investigate
the variation of K, the weighted mean value of K,
for values of Xabetween 0 and r/2 and also between
1/2 and I.

This is best done by means of a numerical
example. Taking K, =27 X 10-3 and Kb=8 X 10-3,
so that Ka/Kb = 3-4, Kal/3=0·3 and KbI/3=0.2

we get the values given in Table I for KideaI,
Kx,y, and Kz for different values of Xa and Xb.
It is seen that Kx,y, and Kz agree within about
2% over the whole range of compositions, thus
showing that the composite block of Fig. 4 (inset)
approximates very well to an isotropic mixture.
The sixth column gives the values ofK, the weight-
ed mean of Kx,y and Kz. These values of K
are plotted in Fig. 4 as solid circles, while the short
vertical lines indicate the deviations of Kx,y and
Kz from K. The variation of Kideal is shown by
the smooth curve, from which it is apparent that
(a) R is exactly equal to Kideal for Xa=O and
r, arid also for Xa= 0.5 I , (b) K deviates from
Kidea1by at most 2%, the deviations being dis-
tributed evenly about the curve, and (c) the
best value of the index e for overall agreement
with R'is the one used for Kideal, i.e. 1/3·

The small discrepancies still remaining between
K and Kideal can be attributed to the fact that
(a) oblique flow of heat has not been considered
in the above analysis, and (b) the temperature
over anyone of the dividing planes such as
AIBl> A2B2 in Fig. 4 is not strictly constant.
Because the small discrepancies between K and
Kideal are evenly distributed about the curve
for Kideal, it can be anticipated that they will
vanish when the defects in the analysis are removed.

4. Experimental Verification with
Cellular Concretes

An excellent experimental test for the
correctness of the formula derived above is in its
application to the thermal conductivities of cellular
materials such as cellular concrete, cork, etc.,
which can be considered to be isotropic mixtures
of the entrapped air with the cement, wood, or
other material involved. Since the conductivity
of cement is of the order of 1.5 X 10-3 calories
cm.-I see -11°C., while that of air is 0.06 X 10-3,
the conductivities of cellular concretes will cover

TABLE J .-COMPARISONOF Kideal WITHKx,y, Kz ANDK FOR Ka=27 X 10-3 AND Kb=8 X 10-3.

Xa xb Kideal X 103 Kx,yX 103 Ks x ro3 Kx ro3 K-Kideal
Kideal

0.0 1.0 8.00 8.00 8.00 8.00 0.0% 1
0.1 0·9 9.26 9·47 9·43 9.46 +2.1% I
0·3 0·7 12,17 12.51 12.27 12·43 +2.1% ~Root mean
0·5 0·5 15.63 15.78 15.36 15.64 +0.1 % square value
0·7 0·3 19.68 19·45 19.07 19.32 -1.8% I = ± 1.3%

.0·9 0.1 24.40 24.00 23.90 23·97 -1.8%
-1.0 0.0 27.00 27.00 27.00 27.00 %10.0 0 J
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a decade of values from I X ro-3 to o. I X ro-3 cal.
cm.-l sec.-l/OC., and so a precise estimate can
be made of the best value of the index E that fits
the experimental data. For a two-component
system such as air and cement,' the density p

is given by p = xair Pair + Xcement pcernent
= Xcement pccment (where x = parts by volume),
to a sufficient accuracy because Pair = 0.001 g./ml.
while pcement 2 g./m!. Thus we may
take the density- p of the cellular concrete as
varying linearly with the porportion of cement
by volume. Table 2 below gives the standard
measured values of p and K for several cellular
cements as given in the report of the Division of
Building Research of the C.S.I.R.O. Australias
(I 954), the standard deviation of the values of
K being about 4.%' In Fig. 5(a), K and also its
logarithm are plotted against the density p,
and it is seen that both graphs show a strong
curvature, but in opposite directions. Since
In K = lim (Kn -I)/n, the function In K clearly

n~o
corresponds to the value fO' of the index E. It follows
that the correct value of the index E lies between I
(K-plot linear) and 0 (InK plot linear). In order
to determine the precise value of E, it is useful
to calculate the function 'P~(K) = ((K X ro4)LI)/E
for two values of E, viz . 0.30 and 0.35, lying on
either side of the expected value I/3' (This function
has the special feature that its value for K.::::,I X ro-4
is practically independent of E.) The corresponding
points are plotted in Fig. 5(b), and are seen to
lie fairly well on the straight lines joining the
extreme points drawn therein. However, a close
inspection of the deviations of the experimental
points from the straight lines shows that they
are preponderantly positive in the plot for E=0.30
and somewhat negative in the case of E=0·35.
Therefore the best experimental value of Emay be
taken as 0.33± 0.02, which is in excellent agreement
with the theoretical value of I/3 derived in
equations (6) and (7) and proved more rigorously
in section 3. This firmly establishes the K I /3 law
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Fig. 5.-Comparison of experimentaldata on cellularconcretes

with the theoreticallydeducedKI/3 law:

(a) graphs of Kexptand In (Kexpt)againstdensityfor cellular
concretes:Kexpt solidcircles;In(Kexpt),hollowcircles.

(b) graphs of 'PE(K)=((Kx 104) <:-1) Ie for two valuesof e ,
showingthat the bestvalueof E liesin betweenthem.

TABLE 2.-MEASURED CONSTANTSFOR CELLULAR CONCRETE(AT 75 OF.) SHOWING THE
ApPLICABILITYOF THE Kl/3 LAW.

-----
Density, p 0.05 20 30 40 50 60 70 11O
(Ibs.jcu. ft.) (Air) (breeze

concrete)
rBritish units 0-4 0·7 1.04 1.38 1.77 2.17 5.2

K ~ cal. cm.-l sec.-1/
l °C.X ro+ .. 0.60 1.38 2·41 3·58 4·75 6'°9 7-47 17·9

In (K X 104) -0.510 +0.322 +0.880 1.275 1·559 1.8°5 2.010 2.885
((K X ro4)0.3 -1)/0.3 -°-473 +°·339 +1·°°7 I·553 1.986 2·396 2·759 4.587
((Kx 104)0.35 -1)/0.35 -0-468 +°·340 +1·°30 1.608 2·°72 2.518 2.918 4.985
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for thermal conductivity of a mixture of Xa parts
(by volume) of a component of conductivity
K, with Xb parts of a component of conductivity
Kb, viz.

1/3 1/3 1/3
K. = XaK, + XbKb (7)mixture •

5. SOlDeApplications to Other Materials

It is interesting to use equation (7) to calculate
the thermal conductivities of cork and rice husk ash,
and to compare these values with those determined
by experiment. For cork of density 0.16 g.fml.,
the proportion by volume of air is given by

Xair = I - (~) = I __ 0~~=0.8
pwood 0.8

Taking the mean thermal conductivity of ordinary
wood as 0.5 X 10-3 cal. cm.-I SeC.-Ire., from the
tables, we get

1/13 1/3 1/3
K = 0.8 K + 0.2 Kcork air wood,

i.e. Kcork = {0.8 X (0.06 X 10-3)1/3 +

0.2 X (0·5 X 1O-3)IJ3}3
cal. cm.-I sec.-r/oe.

=(0.314 + 0.159)3 X 10-3 = 0.105 X 10-3
cal. cm.-I sec.-I/Oe.

which is in excellent agreement with the tabulated
value of o. I I X 10-3,

Rice husk ash is essentially a lattice work of
Si02 with air in the spaces, as appears in the
photograph or Fig. 6(a). X-ray powder photo-
graphs of the ash (Fig. 6(b» indicate that the Si02
is mostly in the form of cristobalite, which has
a density of 2-4 g./m!. and a thermal conductivity
of 18 X 10-3 cal.r? ern. sec.-Ire. However, there
is a strong possibility of a certain amount of
amorphous silica (K = 4 X 10-3 cal. cm.-I
sec.-I/Oe.), being present, and assuming a ratio
of 2 :I for these two constituents, we can estimate
the effective K for the Si02 of the ash as (12±4)
X 10-3 cal. cm.-I sec./oe. From the measured
density, 0.2 g./m!., of the ash (Table 1 in Part I) I
we get

Fig. 6 (a).-Photomicrographof a particleof rice-huskash
(approximatelyx 100) showingitscellularstructure.

XSio2=0.2/2-4 =0.083, and Xair= 1-0.083 = 0.917
Therefore Kash ={0·917 X (0.06 X 1O-3H

+0.083X ((I2±4)XIO-3)t}3
= (0.360 + 0.186 ± 0.022)3

=(0.I64±0.019) X 10-3 caJ.cm.-Isec.-I/Oe.,

which compares well with our measured value I
of 0.I5±0.02. It is noteworthy that a cellular
concrete of the same density as the ash would
have a K value of o. r r X 10-3 as given by the
graphs of Fig. 5.

The good agreement with experiment seen
in these two examples affords additional support
for the correctness of formula (7), which can be
recast into a more useful form for this type of
application, viz.

r 1/3 (Kb 1.)13KCJIc= ~ K. (Xair+ xb -K.)3 ~
I an arr I
L • )

=Kair{ I-Xb+Xb(Kb/Kair) t}3
=Kair{r+(r-P)((Kb/Kair)I ILI)}3 (12)

with P, the porosity or the material, being given
by (Pb-P)/(Pb -pair)~I -P/Pb, where P is the
density of the composite material, and Pb that

Fig. 6 (b).-X-ray
powderpatternof the
ash comparedwitha
standardpatternof cris-
tobalite (both taken
withfilteredCuKradia-
tion).
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of the component B. It is to be noted here that
the experimental results cited above extend only
upto a porosity of about 0.9. Further examination
of the case of materials with higher porosities is
in hand, and will be reported separately.
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